
Remote Sounding Notes

Chris Barnet

NOAA/NESDIS/ORA
chris.barnet@noaa.gov

(301)-763-8136

August 30, 2006

Mailing Address Office Address
World Weather Building Airmen Memorial Building

5200 Auth Road 5211 Auth Road
Camp Springs, MD. 20746 Camp Springs, MD. 20746



Contents Chris Barnet August 30, 2006 i

Preface

These notes were created as background material for a graduate class taught at Univ. of Maryland,
Baltimore County in the Spring of 2004. These are notes - not a textbook, not documentation, and not
complete. They are what I call “a living document.” That is, there is less here than meets the eye. They are
also a reflection of someone that suffers from obcessive compulsive disorder (OCD), of which many scientists
are afflicted but refuse medication. I say, embrace your OCD. As the Bare Naked Ladies said in a song in
1992: “I’m a few bricks short of a full load, but a full load always hurt my back.”

In some sections these notes are literally random scribbling made so I have a quick reference when I do
my work. Someday, I will clean these up and make them more readable, but then there are only 24 hours in
a day - so it may never happen. I hope you will find these notes useful, or at least entertaining. Feel free to
send any comments or suggests to the address on the title page.

Oh yeah, — don’t read too much into the quotes at the beginning of the chapters. They are just some
of my favorites sprinkled through the notes for entertainment.

A common phrase used in the “real world” is that “Those that can, do. Those that can’t, teach.” I have
always found that idea to be grossly oversimplified. While there are always examples to substantiate that
claim, there are many more examples of individuals that are motivated to teach, but find it difficult to find
the time to do it properly. My PhD advisor, Reta Beebe, used to say “I know how to be a better teacher
than I am” whenever students seemed flustered. Having taught a few classes I now interpret her statement
in the following way: she had an awareness of what perfection is, but rarely had the time to achieve it to her
personal satisfaction. My philosophy is summarized by the following quote: “Those who can, do. Those who
believe the future can also, teach.” (John E. King, lawyer/aphorist, in Captive Notations, Little Philosophies
Press, UTNE reader may-june 2005, pg.10.)

Finally, I would like to acknowledge my Spr. 2004 PHYS-741 class for a dynamic and entertaining class
that provided motivation for these notes. Each student used simulated AIRS clear radiance data to test the
following approaches

Student Methodology Used
Ji Gou Singular Value Decomposion
Dorlisa Hommel Statistical regression
Zhibin Sun Twomey’s 1st Derivative
Glynn Hulley Marquart-Leveberg
Kurt Lightner Backus-Gilbert
Eric Maddy Backus-Gilbert
Michele McCourt Singular Value Decomposion
Antonia Gambacorta Minimum Variance
Ray Rogers Maximum a-posteriori
Hai Zhang Maximum a-posteriori
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Figure 1: Participants of PHYS-741 at a talk given by Mous Chahine
on April 2, 2004

Top Row: Michele McCourt, Dorlisa Hommel, Scott Hannon
2nd Row: Jennifer Wei, Kevin McCann, Antonia Gambacorta, Sergio De Souza-Machado

3rd Row: Gylnn Hulley, Ray Rogers
4th Row: Hai Zhang, Fricky Keita, Eric Maddy, Mous Chahine, Kurt Lightner

5rd Row: ?, Ji Gou
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Chapter 1

Introduction to Remote Sensing

... the sixties constituted a breakthrough, a fleeting moment of glory, a time when a significant little chunk
of humanity briefly realized its moral potential and flirted with its neurological destiny, a collective spiritual
awakening that flared brilliantly until the barbaric and mediocre impulses of the species drew tight once more
the curtains of darkness. character Dannyboy Wiggs in Jitterbug Perfume by Tom Robbins pg. 281

1.1 Brief History of Remote Sounding

This introduction is taken from Conrath and Revah (1971).
The first explicit suggestion that temperature profiles in the terrestrial atmosphere could be obtained

from limb-scan measurements performed from an Earth satellite was made by King (1956). Kaplan (1959, see
picture, Fig. 8.7) pointed out that measurements obtained in selected intervals within an infrared absorption
band with a nadir-viewing instrument could be used for the same purpose. In 1964 the first measurements
suitable for temperature profile inversion were obtained from a balloon borne spectrometer (Hilleary, Wark,
and James, 1965). Details of a satellite borne measurement were discussed in Wark and Fleming [1966]. It
was not until the launch of the Nimbus 3 meteorological satellite on April 4, 1969 that suitable, relatively high
spectral resolution, measurements were obtained on a global basis. The Nimbus 3 carried two instruments: the
satellite infrared spectrometer (SIRS) [Wark and Hilleary, 1969] and the infrared interferometer spectrometer
(IRIS) [Hanel and Conrath, Conrath, 1970].

The increased interest in geophysical data and these improved methods of remote measurements induced
a great effort in inverse theory. Although the underlying inversion problem is similar, the individual problems
were initially treated by scientists coming from particular applications. For example, the intense search for
oil led to the classical work of seismic inversion by Backus and Gilbert (1970). Consequently, there is a
historical bias favoring particular inverse methods to each and every application.

We have been launching sophisticated, operational platforms into space since 1978 (TIROS-N) and the
efforts of many people is required for these satellite missions. For example, the Aqua spacecraft, shown
above, has a total mass of 6500 lbs (2934 kg � 1.6 Jeeps) that includes 1750 kg for the spacecraft, 1082 kg
of instruments (AMSR, MODIS, AMSU, HSB, and AIRS) and 102 kg of hydrazine (N2H4) propellant. The
deployed size of the platform is 15.8 feet by 54.8 feet by 26.4 feet with the main component (stowed size)
being 8.8 feet by 8.2 feet by 21.3 feet or about the size of a small bus. The spacecraft consumes 4.5 kW with
1.2 kW reserved for the instruments. It communicated with the Earth every orbit (1.5 hours) via X-band
down-links in Alaska and Svalbard Sweden at a rate of 7.7·106 bits/s or 83 Giga-bytes per day of raw data.

Therefore, modern remote sounding requires the combined efforts of experts in many fields. Atmospheric
science alone requires chemists, mathematicians, and physicists to turn radiance measurements into geophys-
ical parameters as well as to measure these parameters in situ to validate the remotely sensed products.

1
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Figure 1.1: Dave Wark
Dave Wark was influential in the design of the AIRS instrument (see memo in AIRS history, section D.1).
He worked for over 50 years as a civil servant with the MSU, HIRS, AMSU, and was an active member of
the AIRS science team.

We also need mechanical, electronic, and optical engineers and technicians to build, calibrate, monitor, and
maintain the instruments and platform. High speed communications are via microwave (X-band) and requires
experts in E&M as well as radio electronics (as do the microwave instruments). Orbital dynamics and space
environment experts are paramount to the mission. And these missions are expensive, requiring management
of contracts and congressional lobbying to keep these missions funded for the many political epochs (ı.e., an
epoch being defined as either 4 or 8 years in the USA) spanning the decades between design and end-of-life
of the mission.

1.2 Comments on Notation

In these notes I will adopt a notation of linear algebra that denotes the dimensions and row/column indices
of the matrices. For example, we will see that the kernel function, K, is a two dimensional matrix, K(n,L)
where n is a channel or frequency index and L is a height or level index. I will write this matrix as Kn,L.
Having explicit indices help in maintaining correct order for transposes, KT

L,n, and inverses, K−1
L,n. It is also

useful when programming. Loop indices, n, i, j, k, L,m etc. can be used in FORTRAN and it is possible to
easily transform theory into code.

I also find this notation useful for determining the rank of a computation. For example, Kn,L ·XL is a
vector (rank of 1) and its dimensionality is in channel space, n.

In many papers, the minimization is written in terms of “2-norms.” If we are minimizing the squares
between observations, y, and calculations, K · x, it would traditionally be written as

||K · x− y||2 ≡
N∑

n=1

(|K(n,L)X(L)− y(n)|)2 (1.1)
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Figure 1.2: Snapshot of Rudy Hanel receiving the SPIE’s George W. Goddard award in 2001

In my notation I would write this as

||K · x− y||2 ≡ (Kn,L ·XL − yn)T · (Kn,L ·XL − yn) = q(n)T · q(n) = a scalar (1.2)

The implicit summation of a transposed vector with itself will yield a scalar quantity. A summary
of linear algebra operators is given in the Appendix section A.6. It is worth mentioning at this time the
difference between the scalar and covariance operators. If rn is a vector we can take the inner product to
compute a scalar quantity that can be minimized, rT · r.

(
rT · r)

1,1
= [ r(1) r(2) . . . r(N) ] ·



r(1)
r(2)
. . .
r(N)


 (1.3)

This is in contrast to the covariance of r, given by r · rT that results in a matrix of rank equal to two:

(
r · rT

)
n,n

=



r(1)
r(2)
. . .
r(N)


 · [ r(1) r(2) . . . r(N) ] =



r(1) · r(1) r(1) · r(2) . . . r(1) · r(N)
r(2) · r(1) r(2) · r(2) . . . r(2) · r(N)

. . . . . . . . . . . .
r(N) · r(1) r(N) · r(2) . . . r(N) · r(N)


 (1.4)

1.3 Remote sounding summary

We will shown in later chapters that for temperature sounding, the measurements, R(n), are related to the
atmospheric temperature profile, T (z), via a Fredholm integral equation of the 1st kind

R(n)−R0(n) =
∫
K(n, z) · (T (z)− T 0(z)

) · dz (1.5)

where, R0 are the radiances associated with a basic state temperature, T 0 in which the Kernel functions, K,
are computed.
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Figure 1.3: Henry Fleming (circa 1991
Henry Fleming was a pioneer in inversion methods applied to operational satellites. Many of the notes in
this collection are based on a course he taught in 1978.

The number of measurements, N , are finite and, therefore, yield a finite number of sounding measure-
ments, T (z). Thus the true state must be discretized in some way. After discretization the Fredholm equation
can be represented as matrices

∆R(n) =
NL∑
L=1

∆T (L) ·K(n,L) ·∆z(L) (1.6)

where K(n,L) represents the discrete kernel function over the vertical region ∆z(L). We can use an implied
summation to write the equation as a matrix equation and we can put the layer thickness into the kernel
function (Kn,L = K(n,L) ·∆z(L)) and write Eqn. 1.6

∆Rn =
NL∑
L=1

Kn,L ·∆TL ≡ Kn,L ·∆TL (1.7)

and a solution can be written using appendix Eqn. A.44

∆TL = K−1
L,n ·∆Rn =

[
KT

L,n ·Kn,L

]−1 ·KT
L,n ·∆Rn (1.8)

The discretization into too small a number of retrieved parameters yields an over-determined problem
that can usually be solved by least squares methods. When the number of parameters is larger than the
number of observations, then the problem is under-determined. Even though there are more observations than
parameters, the information content of the observations may not be unique. Therefore, even if the problem
is well-posed, it can have marginal eigenvalues, that is to say, K, can be ill-conditioned. Contributions from
marginal eigenvalues can be suppressed and become dominated by the measurement noise, ε(n).

In all of these cases (over-determined, under-determined, and ill-conditioned) there may not be a unique
inverse. However, within the framework of linear inversions it is still possible to find a “reasonable” solution
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Figure 1.4: Graphic of the Aqua Platform
The AIRS instrument is aboard NASA’s EOS Aqua platform. This platform was launched on May 4, 2002.

by using a regularized inverse. A regularized inverse should be insensitive to the noise and insensitive to
the initial first guess state used to initiate the retrieval. It can also used to bring a-priori information into
the solution. This information may be constraints to keep the solution reasonable (smoothness, physical
expectation of the state, etc.) Reasonableness, such as a humidity parameter that cannot be negative, are
difficult to impose in a linear system; however, these can be imposed by an iterative approach.

The invert-ability of K ′
L,n ·Kn,L or Kn,L ·K ′

L,n (a necessary component of a least squares approach) can
be enforced by adding a sufficient amount of an invertible matrix. This has an analogy to electronic filters.
The regularization matrix is like a parallel circuit and represents a bypass circuit. A good filter should pass
contributions from the K ′K’s stop-band.

In this course, we will re-derive each of these methods with an eye on comparing and contrasting the
traditional inversion methods.

1.4 Wavelength and Frequency Specification

1.4.1 Infrared wavelengths

Traditionally, in the infrared microns, µm, or wavenumbers, cm−1, are used. The frequency, ν, in wavenum-
bers, cm−1 is given by

ν(cm−1) ≡ f

c

(s−1)
(cm/s)

(1.9)

Wavenumbers can be thought of as inverse wavelength (in vacuum), so that it can be related to wavelength
in microns, µm, as

ν(cm−1) =
10000
λ(µm)

(1.10)
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Figure 1.5: One of the down-link stations for polar sounders, Svalbard Sweden

Figure 1.6: The AIRS Science
A picture taken at the May 22, 2003 AIRS Science Team meeting and includes many of the authors referenced
in this text (e.g., George Aumann, Mous Chahine, Mitch Goldberg, Phil Rosenkranz, Joel Susskind) along
with the programmers, engineers, and scientists validating the AIRS products.

Wavenumbers are not a frequency or a wavelength and introduce odd factors of the speed of light into the
traditional radiation equations. It also tends to confuse units, such as radiance, that in some applications
is given as erg/cm2/steradian/cm−1/second. In this case, it is non-sensible to write the units of radiance as
erg/cm/steradian/s because the units of cm−1 is really frequency, not spatial dimension or time. Therefore,
it is best to mentally think of cm−1 as a scaled representation of Hertz.

From now on the symbol ν will be used to denote frequency, in general, and where the
units are specifically frequency (in GHz) the symbol f will be used.

1.4.2 Microwave wavelengths

In the microwave the units of milli-meter’s or GHz are usually used.

λ(mm) =
300
f

(1.11)

ν =
f

30
cm−1 f (GHz). (1.12)
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Table 1.1: Example Microwave Wavelengths
f ν wavelength band usage

GHz cm−1 um mm
0.07 0.002 4286000 4286 VHF TV Chl. 4
0.66 0.02 454545 454.5 P TV UHF Chl.45
1.25 0.042 240000 240.0 L (1- 2 GHz) SAR, GPS, POES-data
2.00 0.066 150000 150.0 L/S Cell Phones (1.8-2.2)
2.45 0.0817 122450 122.45 microwave oven
3.00 0.10 100000 100.0 S (2-4 GHz) SAR, POES-cmd, NEXRAD
5.33 0.18 56285 56.29 C (4-8 GHz) SAR
6.6 0.22 45454 45.45 C SMMR, MIMR AMSR
10.0 0.33 33333 33.33 X (8-12 GHz)
15.0 0.50 20000 20.00 Ku (12-18 GHz) QuikSCAT
23 0.77 13043 13.04 K (18-27 GHz) AMSU-A2

31.4 1.05 9554 9.55 Ka (27-40 GHz) AMSU-A2
50 1.67 6000 6.00 V (46-56 GHz) AMSU-A1

57.3 1.91 5236 5.24 W (56-100 GHz) AMSU-A1
60 2.00 5000 5.00 W AMSU-C
89 2.97 3371 3.37 W AMSU-A1
118 3.93 2542 2.54
183 6.10 1639 1.64 G AMSU-B
3000 100.0 100 0.1 far IR

1.5 The Planck Function

In a ceramic kiln at moderate temperature, one can still see the shapes of the objects. This can be seen in
Fig. 1.7 in the lower panel of image. As the temperature rises the radiation becomes thermalized or at local
thermodynamic equilibrium and the objects become difficult be distinguished. Potters use ceramic cones to
measure temperature. In Table 1.2 the bending temperature is given for Orton cones. In Fig. 1.8 we see the
bending of a cone at cone=12.

For an atmosphere in thermal equilibrium the molecular levels are populated according to Boltzmann
statistics, given by the ratio of number density of molecules in state l to the number density of molecules of
the absorbing gas, na, is given by

nl

na
=

gl · e−El/(kbT )

J∑
j=1

gj · e−Ej/(kbT )

(1.13)

where, El is the energy of level l and the summation is over all levels J . The degeneracies, gl, gj are the
number of distinct states have energy El.

This implies densities are high enough that collisions thermalize radiation quickly and the radiation field
can be described by the Planck function. See Appendix C for a derivation of the Planck function.

The Planck function can be written as a function of wavelength, λ,

Bλ(T ) =
2 · h · c2

λ5 · (e(hc/λkT ) − 1
) (1.14)

where h is Planck’s constant, c is the speed of light, k is Boltzmann’s constant.
To write the Planck function as a function of frequency, f , given in seconds−1 (or Hertz) the conversion

is accomplished by noting that Bf (T ) · ∂f = Bλ(T ) · ∂λ so that Bf (T ) = Bλ(T ) · c/f2 and substitution of
λ = c/f in Eqn. 1.14 to obtain
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Figure 1.7: Thermal Equilibrium in a Ceramic Kiln (picture taken from AT 652 on-line notes, Colorado
State)

Bf (T ) =
2 · h · f3

c2 · (e(hf/kT ) − 1
) (1.15)

For infrared radiative transfer used in this text we will write the Planck function as a function of
wavenumber, ν. Here Bν(T ) · ∂ν = Bf (T ) · ∂f or Bν(T ) = Bf (T ) · c and substitution of f = ν · c in Eqn.
1.15 yields

Bν(T ) =
2hc2ν3

ehcν/(kT ) − 1
=

α1ν
3

eα2ν/T − 1
(1.16)

where,
ν = wavenumber in cm−1 ≡ f/c ≡ 104/λ, λ in µm, f in Hz.
T = temperature in degrees Kelvin
α1 = 2hc2 = 1.1910427 · 10−5 for radiance in units of mW ·m−2 · steradian−1/cm−1.
α2 = hc/k = 1.4387752 K/cm−1

h is Planck’s constant (6.62606876 ·10−34 Joule
c is the speed of light (2.99792458 ·108 m/second)
k is Boltzmann’s constant (1.3806503 ·10−23 Joule/K)

1.5.1 Conversion of MODIS to AIRS radiances

MODIS radiances are given in the units of Watts/meter2/µm/steradian while AIRS radiances are given in
the units of milli-Watts/meter2/cm−1/steradian. To convert MODIS to AIRS radiances. If λ is given in
microns and ν is given in cm−1 then we can convert MODIS to AIRS radiances as follows
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Table 1.2: Table of Bending Temperature for Orton Pyrometric Cones
ramp rate, ◦ F/h ramp rate, ◦ F/h

cone 27◦/hr 108◦/hr 270◦/hr cone 27◦/hr 108◦/hr 270◦/hr
14 2464 2489 2523 05 1870 1888 1911
13 2389 2428 2458 06 1798 1828 1855
12 2345 2383 2419 07 1764 1789 1809
11 2322 2361 2399 08 1692 1728 1753
10 2284 2345 2381 09 1665 1688 1706
9 2235 2300 2336 010 1636 1657 1679
8 2212 2273 2320 011 1575 1607 1641
7 2194 2262 2295 012 1549 1582 1620
6 2165 2232 2269 013 1485 1539 1582
5 2118 2167 2205 014 1395 1485 1540
4 2086 2142 2161 015 1382 1456 0504
3 2039 2106 2138 016 1368 1422 1465
2 2034 2088 2127 017 1301 1360 1405
1 2028 2079 2109 018 1267 1252 1283
01 1999 2046 2080 019 1213 1252 1283
02 1972 2016 2052 020 1159 1180
03 1960 1987 2019 021 1112 1143
04 1915 1945 1971 022 1087 1094

RAIRS(mW/M2/cm−1/sr) ≡ RMODIS(W/M2/µm/sr) · 1000
mW
W
· ∂λ
∂ν

= RMODIS(W/M2/µm/sr) · 1000 ·
∂
(

104

ν

)
∂ν

= RMODIS(W/M2/µm/sr) · 1000 · 104 · 1
ν2

= RMODIS(W/M2/µm/sr) · 1000 · 10−4 · λ2

= RMODIS(W/M2/µm/sr) · λ
2

10
(1.17)
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Figure 1.8: Example of measuring temperature with ceramic cones.

Figure 1.9: Lord Kelvin (William Thompson), June 26, 1824 - Dec. 17, 1907. In 1848 he proposed the
absolute temperature scale.
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Figure 1.10: Ludwig Boltzmann (left), Born: Feb. 1844, Committed suicide on Oct. 5, 1906, obtained
Maxwell-Boltzmann distribution in 1871, derived black body radiation law (σ · T 4) in 1884 via statistical
thermodynamics and Max Karl Ernst Ludwig Planck (right), Born: April 23, 1858, Died: Oct. 4, 1947. He
announced his radiation formula on Oct. 19, 1900 at the Berlin physical society meeting (from http://www-
gap.dcs.st-and.ac.uk/ history/Mathematicians)
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1.5.2 Infrared Approximation

An infrared approximation is given by noting the conditions for which the exponential is much larger than
unity (exp(α2ν/T )� 1, or ν ≥ 600cm−1 and T ≤ 300 K) that is sometimes employed is shown below.

Bν(T ) � α1ν
3 exp(−α2ν/T ) mW ·m−2 · steradian−1 · (cm−1)−1 (1.18)

I would recommend never using this approximation. The error introduced is small, but it is systematic.
The execution time savings (one add and one divide) is negligible compared to the execution time of the
exponential. Therefore, there is little advantage with modern computers to employ this approximation.

For microwave remote sounding it is convenient to re-write Eqn. 1.15 as a function of frequency in GHz.

Bf (T ) =
β1 · f3

exp(β2·f
T )− 1

(1.19)

• β1 = α1/c
3 = 2h/c = 4.41136 · 10−10 for radiance with units given in mW · m−2· steradian−1/cm−1.

• β2 = α2/c = h/k = 0.0479611 K/GHz

1.5.3 Rayleigh-Jeans limits

In the Rayleigh-Jeans limit (f 	 (k/h) · T = 20.85 · T ≈ 4000 GHz for Earth scenes) the exponential can be
adequately represented with the first two terms of a Taylor expansion, exp(hf/kT ) � 1 + h·f

k·T . The Planck
function becomes a linear function of temperature in this approximation. In the microwave (ν ≤ 100) we can
employ the Rayleigh-Jeans approximation

Bf � α1

α2 · c2 · 10−18
· f2 · T for f < 400 GHz

=
β1

β2
· f2 · T

=
2 · f2 · k · T

c

= 9.2105 · 10−9 · f2 · T mW ·m−2 · steradian−1 · (cm−1)−1 (1.20)

See Section 1.6 for a discussion on the accuracy of this approximation in practice.

For Earth and deep space it is assumed that the detector is completely filled by the scene. For the Sun,
we will assume that the detector samples angles larger than 1

2

◦, therefore, we need to multiply the Planck
function by the number of steradians the Sun extends:

Ω = π ·
(
R�
D�

)2

� π ·
(

6.951 · 1010

1.4957 · 1013

)2

= 6.78509 · 10−5 (1.21)

where R� is the radius of the Sun and D� is the distance to the Sun. See Section 5.6 for more details. Notice
that at microwave frequencies the solar Planck function is still significant (1% of the Earth scene). This can
introduce systematic errors for microwave limb sounders near the summer poles.

1.5.4 Derivative of the Planck Function

The derivative of the Planck function (Eqn. 1.16) is given by
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Figure 1.11: The Planck function is shown for the Sun (T=5600 K, @ 1 AU), Earth (T=300 K), and deep
space (T=2.73 K)

∂Bν

∂T
= α1 · ν3 ∂

∂T
(exp(α2ν/T )− 1)−1

=
α1α2ν

4

T 2
· exp(α2ν/T )
(exp(α2ν/T )− 1)2

(1.22)

The infrared approximation(ν ≥ 600cm−1 and T ≤ 300 K).

∂Bν

∂T
≈ α1α2ν

4

T 2
· exp(−α2ν/T ) (1.23)

In Table 1.4 the derivative of the Planck function is given for a number of infrared wavelengths. Notice
that the derivative is dependent on temperature. The units of radiance, r, in this table is given as milli-
Watts/meter2/steradian/cm−1

In the microwave (ν ≤ 100) we can use the Rayleigh Jeans approximation

∂Bν

∂T
≈ 2 · c · k · ν2 =

α1

α2
· ν2 =

α1

α2 · c2 · 10−18
· f2 (1.24)

Θb ≡ B−1
f (Rf ) � Rf · c

2 · f2 · k for f < 400 GHz (1.25)

In Figure 1.12, the derivative of the Planck function is shown as a percent change per Kelvin (100 ·
∂Bν(T )

∂T · 1
∂Bν(T ) ) as a function of ν for three temperatures. This is also tabulated in Table 1.5. At microwave

wavelengths a 1 K change in temperature will result in a 0.3% change in radiance (for a scene approximately
equal to a Planck function). At 15 µm there is a 1% for a 1 K change and at 4.3 µm there is a 3.5% change
for a 1 K perturbation in temperature.
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Table 1.3: Error introduced by employing Rayleigh Jeans Approximation
RJ IR approx

f(GHz) ν(cm−1) T Bν dB/dT %err %err
1 0.033 250.0 2.299e-06 9.198e-09 0.00959 -100
1 0.033 300.0 2.759e-06 9.198e-09 0.00799 -100
1 0.033 350.0 3.219e-06 9.198e-09 0.00685 -100
10 0.333 250.0 2.297e-04 9.198e-07 0.0960 -99.8
10 0.333 300.0 2.757e-04 9.198e-07 0.0800 -99.8
10 0.333 350.0 3.217e-04 9.198e-07 0.0685 -99.9
50 1.667 250.0 5.721e-03 2.299e-05 0.481 -99.0
50 1.667 300.0 6.871e-03 2.299e-05 0.401 -99.2
50 1.667 350.0 8.021e-03 2.299e-05 0.343 -99.3
180 6.00 250.0 7.322e-02 2.980e-04 1.75 -96.6
180 6.00 300.0 8.812e-02 2.980e-04 1.45 -97.2
180 6.00 350.0 1.030e-01 2.980e-04 1.24 -97.6
300 10.00 250.0 2.011e-01 8.276e-04 2.93 -94.4
300 10.00 300.0 2.424e-01 8.276e-04 2.44 -95.3
300 10.00 350.0 2.838e-01 8.277e-04 2.08 -96.0

15000 500.00 250.0 8.877e+01 1.083e+00 483 -5.63
15000 500.00 300.0 1.489e+02 1.309e+00 317 -9.09
15000 500.00 350.0 2.186e+02 1.472e+00 231 -12.8
20031 667.70 250.0 7.767e+01 1.220e+00 1090 -2.14
20031 667.70 300.0 1.503e+02 1.672e+00 637 -4.07
20031 667.70 350.0 2.435e+02 2.040e+00 431 -6.43
30000 1000.0 250.0 3.784e+01 8.736e-01 5.37e+03 -0.317
30000 1000.0 300.0 9.924e+01 1.600e+00 2.40e+03 -0.826
30000 1000.0 350.0 1.985e+02 2.370e+00 1.36e+03 -1.64
49998 1666.6 250.0 3.766e+00 1.445e-01 1.53e+05 -0.00683
49998 1666.6 300.0 1.863e+01 4.965e-01 3.69e+04 -0.0338
49998 1666.6 350.0 5.841e+01 1.144e+00 1.37e+04 -0.106
72000 2400.0 250.0 1.652e-01 9.122e-03 7.22e+06 -0.000100
72000 2400.0 300.0 1.651e+00 6.332e-02 8.66e+05 -0.00100
72000 2400.0 350.0 8.548e+00 2.409e-01 1.95e+05 -0.00519
111000 3700.0 250.0 3.410e-04 2.902e-05 8.31e+09 -5.65e-08
111000 3700.0 300.0 1.186e-02 7.010e-04 2.87e+08 -1.97e-06
111000 3700.0 350.0 1.496e-01 6.498e-03 2.65e+07 -2.48e-05

Therefore, for a observation that is an aggregate of many scene types (e.g., clouds, asphalt, trees, soils,
water) the 4.3 µm will have a tendency to be weighted toward the warmer (i.e., surface) regions. The 4.3
µm channels also have less interference from water and ozone absorption. Exploitation of these attributes of
the Planck function forms the foundation of temperature sounding in the presence of clouds (Chahine, 1974,
pg. 236)

1.5.5 Brightness Temperature

It is useful to represent the measured intensity as a “brightness” temperature. The brightness temperature,
Tb, of a given radiance, Rν , is found with the inverse of the Planck function, given in Eqn. 1.16, with
Rν = Bν(T ):
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Figure 1.12: Derivative of the planck function, in %, as a function of frequency

Rν ·
(
eα2ν/T − 1

)
= α1ν

3 (1.26)

eα2ν/T =
α1ν

3

Rν
+ 1 (1.27)

α2ν

T
= loge

(
α1ν

3

Rν
+ 1
)

(1.28)

that yields

Tb ≡ B−1
ν (Rν) =

α2 · ν
loge

(
1 + α1ν3

Rν

) (1.29)

The infrared approximation(ν ≥ 600cm−1 and T ≤ 300 K).

Tb � α2 · ν
loge

(
α1ν3

Rν

) (1.30)

In high resolution infrared instruments (e.g., AIRS, IASI, CrIS) the conversion from radiance to bright-
ness temperature in the presence of noise for very cold (e.g,, cloudy) scenes can cause radiances to approach
zero or even be negative. Calibration errors and errors induced by techniques such as cloud clearing in-
crease the occurrence of small or negative radiances. The can make conversion to brightness temperature
impractical. See section 1.5.7 for more details.
In the microwave (ν ≤ 100) we can use the Rayleigh Jeans approximation

Tb � 1.0857 · 108Rν

f2
(1.31)

See section 1.6 for a discussion on the accuracy of this approximation.
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Table 1.4: Derivative of the Planck Function
wavelength frequency B(T = 300K) dB/dT (T = 300) dB/dT (T = 250)

mm GHz r r/K r/K
30.0 10 0.0003 0.00000092 0.00000092
12.0 25 0.0017 0.00000575 0.00000575
6.0 50 0.0069 0.00002299 0.00002299
3.0 100 0.027 0.00009198 0.00009197
2.0 150 0.061 0.00020694 0.00020694
1.5 200 0.109 0.00036788 0.00036787
1.0 300 0.242 0.00082764 0.00082757

wavelength wavenumber B(T = 300K) dB/dT (T = 300) dB/dT (T = 250)
µm cm−1 r r/K r/K

25.000 400 131.19 0.9834 0.86708
16.667 600 153.386 1.5590 1.19921
9.091 1100 81.494 1.4405 0.71734
6.250 1600 22.689 0.5806 0.18006
4.167 2400 1.6503 0.063320 0.0091220
3.704 2700 0.5574 0.024058 0.0025993
3.333 3000 0.1814 0.008698 0.0007047

Table 1.5: Percent Change in Planck Function
wavelength frequency B(T=300K) dB/dT (1/B) · dB/dT

mm GHz mW/m2/ster/cm−1 mW/m2/ster/cm−1 / K %/K
30.0 10 0.0003 0.00000092 0.337
12.0 25 0.0017 0.00000575 0.334
6.0 50 0.0069 0.000023 0.335
3.0 100 0.027 0.000092 0.336
2.0 150 0.061 0.000207 0.337
1.5 200 0.109 0.000368 0.338
1.0 300 0.242 0.000828 0.341

wavelength frequency B(T=300K) dB/dT (1/B) · dB/dT
µm cm−1 mW/m2/ster/cm−1 mW/m2/ster/cm−1 / K %/K
25.0 400 131.19 0.983 0.75
16.7 600 153.38 1.559 1.0
9.1 1100 81.49 1.441 1.8
6.2 1600 22.69 0.581 2.6
4.3 2300 2.35 0.086 3.7
3.7 2700 0.56 0.024 4.3
3.3 3000 0.18 0.009 4.8

In the upper panel of Fig. 1.13 the radiance spectrum of the US standard atmosphere is shown along
with the Planck function at various temperatures. In the lower panel the conversion of the radiance to Planck
temperature, using Eqn. 1.29, is shown.

1.5.6 Use of Planck function in Noise Specification

Instrument noise is usually given in units of noise equivalent delta radiance units, NE∆N, or noise equivalent
delta temperature units, NE∆T. Radiance noise, NE∆N, is usually computed from the standard deviation of
the measurement of a black body at a stable reference temperature. Radiance varies by orders of magnitude
for multi-spectral instruments and is usually not a sensible unit to use. It can also be confusing to use NE∆N
because there is no standard set of units for radiance.
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Figure 1.13: Illustration of the conversion of radiance to brightness temperature using Eqn. 1.29

NE∆T is also more physical since the temperature of the application is usually known. The fact that
the Planck function is non-linear requires specification of a reference temperature, Tref , that is

NE∆T(Tref ) ≡ NE∆N ·
(
∂Bν(T )
∂T

∣∣∣∣
Tref

)−1

(1.32)

For example, AIRS noise is given in NE∆T at 250◦ K (e.g. see Fig. 25.1). IASI uses NE∆T at 280◦ K.
A lower reference temperature makes NE∆T a large value. Therefore, engineers can use a slight of hand by
representing the “measured” NE∆T from a high temperature black body (usually about 300◦ K).

Within a retrieval, the instrument noise, given in NE∆T(Tref ) needs to be converted into NE∆N. The
bottom line is that if the reference temperature is not given, you MUST ask what it is.

1.5.7 Effective Brightness Temperature Differences

Brightness temperature (see Eqn. 1.29) is significantly more linear for many inversion problems (e.g., tem-
perature retrievals, surface parameter retrievals, etc.)

The infrared radiance for cold scenes (e.g., the tropopause sounding near 4.3 µm) can become quite
small. Radiances can approach zero or even go negative. For example, this can occur in regions of

• cold temperatures (tropopause region, Antarctica, etc.) with high noise

• calibration can introduce error. Over cold regions (such as measurements over Antarctica) can cause
errors to be large.

• Clouds are cold and the clearing of clouds can have systematic biases. If the radiances are systematically
cold the retrieval can compensate and find a physical answer, but only if the radiances are allowed to
go negative during the retrieval.

Interferometers have other mechanisms to make radiances appear negative.
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• tend to have high noise in the shortwave band

• have a channel response function with large side-lobe, for example, the first side-lobe of the de-apodized
channel response function is a sinc function, whose 1st side-lobe is -21.7%.

Therefore, as radiances approach zero the conversion of radiance to brightness temperature become unstable.
Zero or negative radiances, which occur often for operational instruments, cannot be converted to brightness
temperature.

Tb ≡ B−1
ν (Rν) =

α2 · ν
loge

(
1 + α1ν3

Rν

) (1.33)

As radiance approaches zero (but still positive) the argument of loge() in the brightness temperature
expression (see Eqn. 1.29 which is reproduced in Eqn. 1.33 for convenience) becomes large and Tb will tend
toward zero. To first order, this is a reasonable approximation, except that the non-linearity of the Planck
function will exaggerate the amplitude in brightness temperature. At Rν = 0 the denominator is infinite
and will cause errors in most compilers (i.e., Tb is “NaN”). If the radiance becomes slightly negative the
denominator in Eqn. 1.33 be a large negative value, therefore, Tb, will become a small negative temperature
(loge 1− ε is negative). Again, to first order, a retrieval could compensate for this but the response in
brightness temperature is unstable and exaggerated. When Rν <

−1
α1·ν3 then the denominator becomes non-

real. For radiance given in units of mW ·m−2·steradian−1/cm−1, α1 = 1.1910427·10−5 and at Rν < −6.9·10−6

at 2300 cm−1 the brightness temperature is not defined.
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Computed radiances (see Section 5) on the other hand can always be converted to brightness temper-
ature. In most retrieval applications the absolute radiance is never needed. In regressions, a difference
from a mean state is used and in physical retrievals the observed minus computed radiance is used.
Differences of radiance can usually be converted to effective brightness temperature differences, ∆Θ,
as long as a positive reference radiance exists. Here are three examples,

1. In regression, the radiance is referenced to the mean of the training ensemble, < R >. This has
the same linear properties as a brightness temperature formulation. The use of

∆Θ ≡ B−1
ν (R)−B−1

ν (< R >) (1.34)

� (R− < R >) ·
(
∂Bν(T )
∂T

∣∣∣∣
B−1

ν (<R>)

)−1

(1.35)

2. In physical retrievals the observations, R, are compared to computed radiances, Rn(X), com-
puted from the geophysical state, X.

∆Θ ≡ B−1
ν (R)−B−1

ν (Rn(X)) (1.36)

� (R−Rn(X)) ·
(
∂Bν(T )
∂T

∣∣∣∣
B−1

ν (Rn(X))

)−1

(1.37)

3. Finally, if no reference exists, a reference spectrum, Bν(Tmin), could be computed for the coldest
temperature expected in the observation ensemble, Tmin. An effective brightness temperature

Θ ≡ B−1
ν (R) (1.38)

� Tmin + (R−Bν(Tmin)) ·
(
∂Bν(T )
∂T

∣∣∣∣
Tmin

)−1

(1.39)

Both Bν(Tmin) and ∂Bν(T )
∂T

∣∣∣∣
Tmin

can be pre-computed and stored into data files or memory.

1.6 Cold Calibration and the Rayleigh Jeans Approximation

This section is taken from Janssen (1993, pg. 9-11) and is a practical example of how approximations can
complicate life and may not be worth the small savings in computation. In microwave instruments the
radiometers are usually calibrated in-orbit by measuring a reference black body at at high temperature (≈
300K) and measuring cold space through a space-view port. This space-view effectively measures the cosmic
background temperature, Tcb = 2.73 K.

The thermodynamic temperature is given with the Planck function. We will use Eqn. 1.15, reproduced
here, for a frequency, f , given in Hertz.

Bf (T ) =
2 · h · f3

c2 · (e(hf/kT ) − 1
) (1.40)

The Rayleigh-Jeans approximation is employed with a high degree of accuracy when hf << kT . This
can be written as
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B̃f (T ) ≡ 2 · k · f2 · T
c2

(1.41)

The microwave brightness temperature for an arbitrary radiance, If , can be written as

Tb ≡ c2

2 · k · f2
· If (1.42)

We can substitute Eqn. 1.40 into Eqn. 1.42, that is, set If = B̃f (ν)

Tb =
c2

2 · k · f2
·Bf (T ) (1.43)

=
c2

2 · k · f2
· 2 · h · f3

c2 · (e(hf/kT ) − 1
) (1.44)

=
h · f
k

(
e(hf/kT ) − 1

)−1

(1.45)

The ratio of the approximation to the real thermodynamic Planck function is given by

R ≡ B̃ν(T )
Bν(T )

(1.46)

=
2 · k · f2 · T

c2
· c2

2 · h · f3
·
(
e(hf/kT ) − 1

)
(1.47)

=
k · T
h · f ·

(
e(hf/kT ) − 1

)
(1.48)

Now notice that the last equation is equal to T divided by Eqn. 1.45, that is

R ≡ B̃ν(T )
Bν(T )

=
T

Tb
(1.49)

In Fig. 1.14 we show the fractional error in Tb as a function of frequency. A T = 300 K the value of R
is within 1% for 0 ≤ f ≤ 10 GHz. As temperature decreases the error in R grows. At T = 3K the error is
10% at 10 GHz.

It is also instructive to show the absolute error, Tb − T , as a function of temperature. In Fig. 1.15
we can see that for all frequencies greater than ≈ 30 GHz the error is in excess of 1 Kelvin. What’s
worse is that this will introduce systematic errors because

a) the error is spectrally correlated, and,

b) is it not a strong function of the scene temperature.

In all domains where R significantly departs from unity the radiative transfer for the microwave will need
to be adjusted. A major improvement can be made to the microwave brightness temperature quite simply.
First, lets expand the exponential in Eqn. 1.48

ehf/kT � 1 +
hf

kT
+

1
2

(
hf

kT

)2

+
1
3

(
hf

kT

)3

+ . . . (1.50)

to obtain

R � 1 +
1
2

(
hf

kT

)
+

1
3

(
hf

kT

)2

+ . . . (1.51)

If we redefine the microwave brightness temperature to include one additional term of the expansion
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Figure 1.14: Percent errors for the R-J approximation

T ′
b ≡

c2

2 · k · f2
· If +

h · f
2 · k (1.52)

we can see that the R is much closer to unity except for very low temperatures. We can re-evaluate the rela-
tionship between thermodynamic temperature, T , and the microwave brightness temperature by substituting
Eqn. 1.40 into Eqn. 1.52 to obtain

T ′
b =

c2

2 · k · f2
·Bf (T ) +

h · f
2 · k (1.53)

=
c2

2 · k · f2
· 2 · h · f3

c2 · (e(hf/kT ) − 1
) +

h · f
2 · k (1.54)

=
h · f
2 · k

[
2

e(hf/kT ) − 1
+ 1

]
(1.55)

=
h · f
2 · k

[
2 + e(hf/kT ) − 1
e(hf/kT ) − 1

]
(1.56)

=
h · f
2 · k

[
e(hf/kT ) + 1
e(hf/kT ) − 1

]
(1.57)

In Table 1.6 we compare Tb as defined by Eqn. 1.42 to T ′
b as defined by Eqn. 1.52 for the thermodynamic

temperature, T , of 2.73 and 300 Kelvin. Notice that the original formulation is in error for all the AMSU-A
and AMSU-B channels while the correct formulation is quite accurate for high temperature (error < 0.03 K
for all f’s), but the space view port still needs a large correction (bias of 2 K at 183 GHz).

So here is the rub. The AMSU on the NASA Aqua platform utilized the corrected form of the microwave
brightness temperature, T ′

b, while NOAA uses the Planck function to derive the thermodynamic brightness
temperature. At meetings and in the literature both are referred to as “brightness temperature”, yet the
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Figure 1.15: Brightness temperature errors for the R-J approximation

Table 1.6: Microwave Adjustment to the Cosmic Background Temperature due to the Rayleigh-Jeans Ap-
proximation

f λ Tb Tb T ′
b T ′

b

GHz mm T=2.73K T=300K T=2.73K T=300K
23.80 12.60 2.199 299.429 2.770 300.000
31.40 9.55 2.045 299.247 2.799 300.001
50.30 5.96 1.699 298.795 2.906 300.002
57.29 5.23 1.582 298.627 2.957 300.002
89.00 3.37 1.130 297.869 3.265 300.005
118.75 2.52 0.807 297.159 3.656 300.009
150.00 2.00 0.555 296.415 4.155 300.014
166.00 1.81 0.455 296.034 4.439 300.018
183.30 1.64 0.365 295.623 4.764 300.022

calibration of the space view and the correct radiative transfer in an inversion code must use 2.73 for the
cosmic background radiation if using NOAA data files and they must use Eqn. 1.57 or the values in the
table above for the cosmic background temperature. The error is systematic, so it is important to utilize the
correct radiative transfer. Nice, eh?

In Fig. 1.16 and Fig. 1.17 we reproduce Fig. 1.14 and Fig. 1.15 to show the error characteristics of the
corrected microwave brightness temperature, T ′

b. First the relative error. For T ≤ 300 K the error in R is
reduced substantially out to 100 GHz. For 100 ≤ T ≤ 300 most frequencies in use today are within 1% of R.
The absolute error is improved substantially.
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Figure 1.16: Percent errors for a modified R-J approximation

Figure 1.17: Brightness temperature errors for a modified R-J approximation
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1.7 The US Standard Atmosphere

1.7.1 Dry Air Molecular Weight

(From the US Standard Atmosphere 1976, Table 3 and page 33 (Trace Constituents)
R∗ = Na · k = 8.31432 · 107 erg/mole/K
mww = 18.016 gm/mole
mwd = 28.964 gm/mole
mwo = 47.9982 gm/mole
gs = Standard surface gravity = 980.665 cm/s
Ps = Standard surface pressure = 1.01325 ·106 dyne/cm2

Ts = Standard surface temperature = 273.15 K = 0◦ C
Na = Avogadro’s number = 6.022169 ·1023 molecules/mole
N0 = Loschmidt’s number = Ps ·Na/R∗/Ts = 2.686754 ·1019 molecules/cm3/amagat
H0 = Ts ·R∗/(gs ·mw) = 7.99545·105 cm

mw
Gas gm/mole

H 1.00794
C 12.011
N 14.00674
O 15.9994
S 32.066

Table 1.7: Composition of the Earth’s Atmosphere
mw volumetric column density

Gas gm/mole fi (cm-amagat)
N2 28.0134 0.78084
O2 31.9988 0.209476
Ar 39.948 0.00934
CO2 44.00995 363 ppmv 290.24
Ne 20.183 18.18 ppmv
He 4.0026 5.24 ppmv
Kr 83.80 1.14 ppmv
Xe 131.30 0.087 ppmv
CH4 16.04303 1.75 ppmv 1.4
H2 2.01594 0.5 ppmv
mw 28.9644
H2O 18.016 f ≈ 0.005 at 1 km (900 mb)
O3 47.9982 f ≈ 20 ppmv at 36 km (5 mb) 0.35
N2O 44.0129 270 ppbv
NO 30.0061 0.5 ppbv
NO2 46.0055 1 ppbv
H2S 34.0819 0.05 ppbv
NH3 17.0306 4 ppbv
SO2 64.0648 1 ppbv
CO 28.0104 190 ppbv 0.15



Chapter 1: Introduction Chris Barnet August 30, 2006 25

mwd =
I∑

i=1

mwi · fi (1.58)

= 28.0134 · 0.78084 + 31.998 · 0.209476 + . . .

= 28.964 gm/mole

1.7.2 US Standard Temperature Profile

Table 1.8: The US Standard Atmosphere
(taken from Chamberlain 1978, derived from the US Standard Atm. 1976)

Z Pstd Tstd Hstd Mstd Gstd

0.0 1013.25 288.0 8.434 28.96 980.7
5.0 540.5 256.0 7.496 28.96 979.1
10.0 265.0 223.0 6.555 28.96 977.6
15.0 121.1 217.0 6.372 28.96 976.1
20.0 55.29 217.0 6.382 28.96 974.5
25.0 25.49 222.0 6.536 28.96 973.0
30.0 11.97 227.0 6.693 28.96 971.5
35.0 5.746 237.0 7.000 28.96 970.0
40.0 2.871 250.0 7.421 28.96 968.4
45.0 1.491 264.0 7.842 28.96 966.9
50.0 .7978 271.0 8.047 28.96 965.4
55.0 .4253 261.0 7.766 28.96 963.9
60.0 .2196 247.0 7.368 28.96 962.4
65.0 .1093 233.0 6.969 28.96 960.9
70.0 .05221 220.0 6.570 28.96 959.4
75.0 .02388 208.0 6.245 28.96 957.9
80.0 .01052 198.0 5.962 28.96 956.4
85.0 .00446 189.0 5.678 28.96 955.0
90.0 .00184 187.0 5.640 28.91 953.0
95.0 .00076 189.0 5.730 28.73 952.0
100.0 .00032 195.0 6.010 28.40 951.0

• Pstd is the pressure associated with altitude Z in milli-bars.

• Tstd is the temperature profile, Kelvin

• Hstd is the scale height, kilo-meters

• Mstd is the molecular weight, grams/mole

• Gstd is the acceleration of gravity, cm/sec
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1.7.3 US Standard Water Profiles

Table 1.9: US Standard Atmosphere Water Profiles
(from US Standard Atmosphere 1976, Table 20, pg. 44, rw(z) ppm by mass)

Alt P record 1% midlat. 1% record
(km) (mB) low low mean high high

sfc 1013.25 0.1 5.0 4,686 30,000 35,000
1 890 24.0 27.0 3,700 29,000 31,000
2 790 21.0 31.0 2,843 24,000 28,000
4 610 16.0 24.0 1,268 18,000 22,000
6 470 6.2 12.0 554 7,700 8,900
8 350 6.1 6.1 216 4,300 4,700

10 265 5.3 43.2 1,300
12 195 1.2 11.3 230
14 140 1.5 3.3 48
16 100 1.0 3.3 38

1.7.4 US Standard Ozone Profile

Table 1.10: US Standard Atmosphere Ozone Profile
(from US Standard Atmosphere 1976, pg. 38)

Total column of ozone is 0.345 cm-atm = 345 DU
Z r N dN

(km) kg/kg #/cm3 #/cm3

2.0 5.40E-08 6.80E+17 3.80E+17
10.0 2.18E-07 1.13E+18 1.23E+18
20.0 4.27E-06 4.77E+18 0.98E+18
30.0 1.09E-05 2.52E+18 0.33E+18
40.0 1.21E-05 6.07E+17 0.79E+17
50.0 5.15E-06 6.64E+16 1.10E+16
60.0 1.88E-06 7.33E+15 2.50E+15
70.0 5.10E-07 5.40E+14 3.10E+14

• r is the mass mixing ratio (mass of ozone to mass of dry air)

• N is the number density (# of molecules per cm3)

• dN is the variability in N
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Chapter 2

Vertical Quadrature

Why must hailstones always be the size of something else. George Carlin on the Johnny Carson show in May
1992

2.1 The Gas Constant

Runiv = cp − cv = 8.3143 Joules/mole/K = 8.3143 · 107 erg/mole/K (2.1)

mwair = 28.964 gm/mole (2.2)

Rg(air) = Runiv/mwair = 287.05 Joule/Kg/K (2.3)

Cp(air) = 1005 J/Kg/K (2.4)

κ ≡ Rg

Cp
=
Runiv

cp
(2.5)

γ ≡ Cp

Cv
=
cp
cv

(2.6)

Table 2.1: Values of the gas constant, κ, and γ in the solar system
< mw > Rgas Cp κ γ
gm/mole J/gm/K J/gm/K

Venus 44.01 0.18892 0.8501 0.2222 1.2857
Earth 28.96 0.28710 1.0040 0.2860 1.4005
Mars 44.01 0.18892 0.8312 0.2273 1.2941
Jupiter 2.22 3.74518 12.3591 0.3030 1.4348
Saturn 2.14 3.89246 14.0129 0.2778 1.3846
Uranus 2.30 3.61491 13.0137 0.2778 1.3846
Neptune 2.30 3.61491 13.0137 0.2778 1.3846
Titan 28.67 0.29000 1.0440 0.2778 1.3846

28
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2.2 Ideal Gas Law

From the ideal gas law we can define the number of particles at standard temperature (273.15 K) and standard
pressure (1 atm = 1013.25 milli-bars). The ideal gas law can be written many ways, here we will adopt the
notation(s)

P = N · k · T =
ρ ·Na

< mw >
· k · T = ρ ·Rg · T (2.7)

where, N is the number of molecules per unit volume, Boltzmann’s constant k = 1.3806 · 10−16 erg/K, the
gas constant Rg = Na · k/mw = R∗/mw, Avogadro’s number, Na = 6.02 · 1023 particles per mole, mw is the
molecular weight in grams/mole,

2.3 Hydrostatic Equilibrium

It is possible to relate vertical height, z, in terms of pressure. In the atmosphere the pressure decreases as
we move radially outward (i.e., “up”) due to the lower “weight” of the atmosphere above. This is expressed
to a high degree of accuracy by the hydrostatic equilibrium equation (derived from the vertical momentum
balance):

∂P (z) = −ρ(z) · g(z) · ∂z (2.8)

where ρ is the local density and g is the acceleration of gravity. We can assume that g(z) is constant with a
value g0 over the range of an atmospheric layer we usually consider.

2.4 Column Density

This number of molecules at STP is called Loschmidt’s number and has the value,

N0 =
Pstp

k · Tstp
= 2.687 · 1019cm−3 (2.9)

Most of the optical parameters are measured in the laboratory at standard temperature and pressure
(STP). In other regions of the atmosphere the pressure and temperature is different so it is sometimes useful
to scale the optical parameters to a standard unit of atmosphere, the amagat. For example, the column
density of a gas given in cm-amagats is the “thickness” the gas in question would have at STP in units of
centi-meters. At different pressures this can be scaled by the density using the equation-of-state, which for
most regions of interest in remote sensing is the ideal gas law.
The number of amagats of a gas is given as a ratio of the actual number of particles at the given temperature
and pressure to Loschmidt’s number.

amagat =
ρ

ρSTP
=

N

N0
(2.10)

In planetary atmospheres the number density is a function of height. We can calculate the thickness of an
equivalent atmospheric column at standard temperature and pressure. This is denoted as cm-amagats or
Km-amagats and is given by

Z =
1
N0

∞∫
z

Ni(z) · dz (2.11)

Hydrostatic equilibrium, Eqn. 2.8, relates the pressure and vertical coordinates

dP ≡ −ρ · g · dz, or dz =
−dP
ρ · g , (2.12)
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and the number density, Ni can be written as a function of the density,

Ni = qi · ρNa

mw
, molecules/cm3 (2.13)

where, qi is the volumetric fraction of specie i.

Z =
Na

gN0

P∫
0

qi
mw
· dP ≈ Na

gN0

qi
mw
· P = H0 · P (2.14)

A0 =
10 ·Naqi
gN0mw

Km− amagat
Bar

(2.15)

Table 2.2: conversion from pressure to km-amagats for the planets
Earth Mars Jupiter Saturn Titan Uranus Neptune units

g 981.0 374.1 2425.3 1000.0 136.0 880.1 1110.5 cm/s
q(H2) 0.90 0.96 1.00 0.85 0.85
<mw> 28.97 44.01 2.22 2.14 28.00 2.30 2.30 gm/mole
A0 7.88 13.61 37.45 100.50 58.85 94.08 74.56 Km-am/Bar
1000/A0 126.9 73.49 26.70 9.95 16.99 10.63 13.41 mb/Km-am

2.5 Gravity

Table 2.3: Values of gravitational acceleration in the solar system
< g > < g > g(0) g(45) g(90)
cm/s2 gearth cm/s2 cm/s2 cm/s2

Venus 889.89 0.9082 889.89 889.89 889.89
Earth 979.86 1.0000 976.81 981.29 987.16
Mars 374.10 0.3818 372.40 374.90 378.10
Jupiter 2425.61 2.4755 2256.64 2504.58 2833.44
Saturn 1000.09 1.0206 882.36 1055.28 1283.11
Uranus 880.07 0.8982 860.29 889.23 928.60
Neptune 1110.46 1.1333 1087.16 1121.31 1167.07
Titan 135.80 0.1386 135.80 135.80 135.80

q =
ω2 · a3

G ·M (2.16)

2.6 Atmospheric Scale Height

The value of ρ can be related to pressure through the equation of state, so that:

∂P = − P

Rg · T · g0 · ∂z (2.17)

1
P
∂P = − g0

Rg · T · ∂z (2.18)
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Table 2.4: Values of gravitational harmonic terms (Hubbard and Marley, 1989)
106 · J2 106 · J4 106 · J6 106 · q

Venus . . . .
Earth . . . .
Mars 1960.454 . . .
Jupiter 14,697 -584.0 31.0 89,180
Saturn 16,331 -914.0 108.0 154,766
Uranus 3,516 -31.9 0.0 29,513
Neptune 4,000 0.0 0.0 28,960

∂ loge(P ) ≡ ∂z

H(z)
, H(z) =

RgT

g0
(2.19)

If there is little variation in composition then Rg is a constant and the only variation is in temperature. For
a wide vertical range near the tropopause the temperature is nearly constant and, therefore, the scale height,
H(z), is also constant. In that region the pressure is related simply to the height:

P (z) � P (z0) · e−(z−z0)/H (2.20)

or

z(P ) � −H · loge

(
P

P (z0)

)
(2.21)
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Table 2.5: Scale Height, sound velocity, radiative time constant and phase lag for the planets
Stratopause Values

T P ρ H Vsound τrad phase
K mb gm/cm3 Km m/s years deg

Venus 400.0 50.0 6.6166·10−05 8.492 311.7 0.003 1.85
Earth 270.0 1.0 1.2901·10−06 7.911 329.5 0.000 0.08
Mars 140.0 0.005 1.8905·10−8 7.070 185.0 0.000 0.00

Jupiter 163.0 3.0 4.9143·10−7 25.167 935.9 0.015 0.45
Saturn 145.0 2.0 3.5435·10−7 56.435 884.0 0.039 0.48
Uranus 120.0 1.0 2.3053·10−7 49.290 775.0 0.036 0.15
Neptune 130.0 2.0 4.2559·10−7 42.319 806.7 0.045 0.10
Titan 170.0 1.0 2.0284·10−6 36.304 261.3 0.007 43.69

Tropopause Values
Venus 250.0 100 2.1173·10−4 5.307 246.4 0.026 14.83
Earth 217.0 100 1.6051·10−4 6.358 295.4 0.043 14.96
Mars 140.0 0.010 3.7809·10−8 7.070 185.0 0.000 0.01

Jupiter 110.0 140 3.3983·10−5 16.984 768.8 2.273 50.28
Saturn 85.0 100 3.0224·10−5 33.083 676.8 9.677 64.10
Uranus 53.0 110 5.7414·10−5 21.770 515.1 6.340 73.81
Neptune 54.0 200 1.0246·10−4 17.579 519.9 3.132 67.26
Titan 70.0 100 4.9261·10−4 14.949 167.7 9.506 89.96

1 BAR Values
Venus 360.0 1000 1.4704·10−3 7.643 295.7 0.087 41.57
Earth 288.0 1000 1.2094·10−3 8.438 340.3 0.182 48.82
Mars 140.0 7 2.6466·10−5 7.070 185.0 0.024 4.59

Jupiter 165.0 1000 1.6182·10−4 25.476 941.6 4.811 68.57
Saturn 134.0 1000 1.9172·10−4 52.154 849.8 4.699 79.23
Uranus 76.0 1000 3.6399·10−4 31.217 616.8 2.873 84.62
Neptune 76.0 1000 3.6399·10−4 24.740 616.8 3.230 76.85
Titan 86.0 1000 4.0096·10−3 18.66 185.8 .265 89.99

Surface (H2O level for outer planets) Values
Venus 731.0 92 BAR 6.6619·10−2 15.519 421.4 0.954 84.14
Earth 288.0 1.013 BAR 1.2252·10−3 8.438 340.3 0.184 49.19
Mars 214.0 0.007 BAR 1.7314·10−5 10.807 228.7 0.007 1.29

Jupiter 294.0 7 BAR 6.3574·10−4 45.394 1256.9 5.953 72.40
Saturn 313.0 21 BAR 1.7237·10−3 121.823 1298.8 0.698 83.41
Uranus 366.0 260 BAR 1.9651·10−2 150.336 1353.5 2.598 87.68
Neptune 360.0 283 BAR 2.1746·10−2 117.192 1342.3 1.495 84.98
Titan 94.0 1.5 BAR 5.5026·10−3 20.074 194.3 8.887 89.99
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2.7 Radiative Time Constants

The radiative time constant, τr, is defined by the derivative of the volumetric heating rate, Q, with respect
to temperature and is given by

∂Q

∂T
≡ 1
τr

(2.22)

For planetary applications the integral of the Planck function is a reasonable estimate (in reality the
outgoing long-wave radiation is more complex due to clouds) of the cooling emission.

Qir = σ · T 4 · ∂ε
∂z

(2.23)

τr =
ρCp

4σT 3 ∂ε
∂z

(2.24)

Harshvardan and Cess (1976, Tellus 28 p.1-10) give a value for Earth CO2 of ∂ε/∂z = −0.0081 per Km
and Cess and Khetan (1973, JSQRT 13 p.995-1009) give a value for Jupiter,Saturn,Neptune, and Uranus of
∂ε/∂z = −0.0068,−0.0063,−0.0061, and− 0.0058 per Km, respectively.

τr =
ρHCp

4εσT 3
(2.25)

The phase shift, Φ, is the seasonal lag due to the radiative time constant. It arises from the 1st Fourier
moment of the thermal response. A value of Φ = 90◦ indicates a full seasonal shift (e.g., the warm maximum
expected at the summer solstice would occur at the autumnal equinox).

Φ = tan−1

(
2π · τr

τo

)
(2.26)

where τo is the orbital period. The tables below used a value of ε = 0.3.

2.8 Newtonian Cooling Approximation

∂T

∂t
=
Teq − T

τr
(2.27)

Teq =
∞∑

n=1

Teqn · e−i(nΩt) (2.28)

where, Ω = 2π
τo

where τo is the period of the cycle (usually seasonal or diurnal). Assume that the temperature
is periodic (i.e., many seasonal cycles have occured and all transient effects have been damped out). A
Fourier Series will fit the seasonal cycle of temperature:

T =
∞∑

n=1

Tn · e−i(nΩt−φn) (2.29)

Take the derivative of Eqn. 2.29 and substitude into Eqn. 2.27. Also substitute Eqn. 2.28 and Eqn. 2.29
into the right hand side of Eqn. 2.27. Each term must be equal to

−i · nΩt · Tn · e−i(nΩt−φn) =
Teqn · e−i(nΩt) − Tn · e−i(nΩt−φn)

τr
(2.30)

and simplify
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(1− i · nΩtτr) · Tn · e−i(nΩt−φn) = Teqn · e−i(nΩt) (2.31)

(1− i · nΩtτr) · Tn · e−i(nΩt) · e−i(φn) = Teqn · e−i(nΩt) (2.32)

Tn =
Teqn · e−iφn

(1− i · nΩtτr)
(2.33)

Note that An · e−iφn ≡ An cos(φn)− i ·An sin(φn). If An cos(φn) = 1 and An sin(φn) = nΩτr, therefore,

φn = tan−1

(−nΩτr
1

)
= tan−1 (−nΩτr) = tan−1

(
−2π · n · τr

τo

)
(2.34)

and

An =
√

1 + (nΩτr)
2 =

√
1 +
(
n · 2π · τr

τo

)2

(2.35)

so that the denominator in Eqn. 2.29 becomes

1− i · nΩtτr ≡
√

1 + (nΩτr)
2 · e−i(nΩ) (2.36)

Tn =
Teqn · e−iφn · e+iφn√

1 + (nΩτr)
2

=
Teqn√

1 + (nΩτr)
2

(2.37)

Note that when τr � 1
Ω = τo

2π then the phase shift in Eqn. 2.34 approaches a full season

if τr � τo
2π

then φn → π

2
(2.38)

For Saturn 2π · τr

τo
� 3 where τo = 29.53 years. The radiative time constant, τr, is approximately 14.1

years. The lag in temperature, δt, is given by δt = φn

2π τo

n An φn δt
0 1 0 0
1 0.316 71o 5.9 year
2 0.164 81o 6.6 year
3 0.110 84o 6.9 year
4 0.083 85o 7.0 year
5 0.067 86o 7.1 year
6 0.055 87o 7.1 year
7 0.048 87o 7.2 year

Saturn’s atmosphere behaves like an RC electronic circuit. If an input voltage, Vo(t) is applied to the
series R & C circuit

Vo(t) = VR(t) + VC(t) = I(t) ·R+
1
C
·
∫
I(t) · dt (2.39)

where,

I(t) = C · ∂VC(t)
∂t

(2.40)
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∂VC(t)
∂t

=
Vo(t)− VC(t)

τ
(2.41)

and in this case, τ = 1
R·C . In this analog, Vo(t) is same as Teq(t), that is the forcing of the equation. In

atmospheric terms this would be the seasonal or diurnal forcing by the Sun. The voltage across the capacitor,
VC(t), is analygous to the temperature in the atmosphere.

2.9 Log Pressure Coordinate System

If temperature changes with height the relationship between height and pressure is more complex, however,
the height can always be related to the pressure through a “stretched” logarithmic scale. Since most of the
opacity calculations are simpler if they are a function of pressure, we can calculate a height function which
is related to pressure.

z′(P ) = − loge

(
P

P (z0)

)
+ z0 (2.42)

and the real height is related to our log-pressure coordinate:

z(P ) =
∫ P

P (z0)

∂z′(P )
H(z)

(2.43)

2.10 Lapse Rates

2.10.1 Adiabatic (Dry) Lapse Rate

from the first law of thermodynamics

dQ = dU + δW = n · cvdT + PdV = 0 (2.44)

where cv is given in units of erg/K/mole and n is the number of moles. The derivative of the ideal gas law,
P · V = nRT , is

V dP + PdV = nRdT (2.45)

equating PdV and noting that R = cp − cv yields

dQ = ncvdT − V dP + n(cp − cv)dT (2.46)

dQ = ncpdT − V dP = 0 for adiabatic (2.47)

Cp = cp/mw and ρ = n ·mw/V so that

dT

dP
=

V

n · cp =
1
Cpρ

(2.48)

From hydrostatic equilibrium, Eqn. 2.8 and the gas law we can convert from pressure to height coordinates:

dP = −gρdz (2.49)

dT

dz

∣∣∣∣
a

= − g

Cp
(2.50)

Γa ≡ −dT
dz

∣∣∣∣
a

=
g

Cp
(2.51)
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2.10.2 Auto-convective Lapse Rate

From hydrostatic equilibrium, Eqn. 2.8, and the ideal gas law, P = Rgρ(z)T (z) we have

ρ = −1
g

dP

dz
= −Rg

g

[
T (z)

∂ρ

∂z
+ ρ(z)

∂T

∂z

]
(2.52)

dT

dz
= − g

Rg
− T (z)
ρ(z)

· dρ
dz

(2.53)

But T (z) and ρ(z) are always positive so that when

Γ ≡ −dT
dz
≥ g

Rg
(2.54)

then dρ/dz ≥ 0. Thus, the auto-convective criteria is that when the density increases with altitude the
atmosphere will be forced to convectively adjust and this condition is met when

Γc ≡ g

Rg
(2.55)

2.10.3 Potential Temperature

Potential temperature is derived directly from integration of the 1st law of thermodynamics. It is the tem-
perature a parcel of air at P and T would have if it were at Ps. It is conserved for adiabatic motions, (i.e.,
dΘ/dt = 0).

dQ

n ·mw · T =
CpdT

T
− RgdP

P
= 0 (2.56)

Θ = T ·
(
Ps

P

)κ

=
P

ρRg

(
Ps

P

)κ

κ = Rg/Cp (2.57)

For the Earth κ = 0.286 (mw = 28.96, Cp = 1.004 Joules/gram/K). Some authors write this equation with
γ = Cp/Cv = 1/(1− κ)

∂P

∂z
= −ρ · g =

P · g
Rg · T = − P

H(z)
(2.58)

∂ log(P ) = −H(z) · ∂z (2.59)

therefore,

P

Ps
= e

−
∫ z

0
dz′/H(z′) (2.60)

Θ = T · e−
∫ z

0
dz′/H(z′) (2.61)

if H(z) = H0

Θ = T · e−κ·z/H0 (2.62)
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2.11 Heat from Condensation

(Holton pg. 340)

∂ ln (Θ)
∂t

=
−Lc

CpṪ
· ∂qs
∂t

=
−Lc

Cp · T · ρ ·
∂ρc

∂t
(2.63)

where, qs = mc

<mw> = ρc

ρ , is the ratio of the density of the condensate divided by the density of the atmosphere
and we assume that the density of the atmosphere is constant, that is, ρ �= ρ(t). Θ is the potential temperature
defined by

Θ ≡ T ·
(
P0

P

)κ

and κ ≡ Rg

Cp
(2.64)

so that

ln (Θ) = ln
(
T ·
(
P0

P

)κ)
(2.65)

= ln (T ) +
Rg

Cp
· ln
(
P0

P

)
(2.66)

= ln (T )− Rg

Cp
· ln
(
P

P0

)
(2.67)

= ln (T )− Rg

Cp ·H · z (2.68)

since z = H · ln
(

P
P0

)
. Noting that ∂ ln(x)/∂t = 1/x∂x/∂t the substitution of Eqn. 2.68 into Eqn. 2.63

becomes

∂ ln (Θ)
∂t

=
1
T
· ∂T
∂t

+
Rg

Cp ·H ·
∂z

∂t
=

−Lc

Cp · T · ρ ·
∂ρc

∂t
(2.69)

which simplifies to

∂T

∂t
+
Rg · T
Cp ·H ·

∂z

∂t
=
−Lc

Cp · ρ ·
∂ρc

∂t
(2.70)

noting that H ≡ Rg · T/g then we have the familiar thermal energy

∂T

∂t
+

g

Cp
· ∂z
∂t

=
Qc

ρ · Cp
(2.71)

with the net heating given by

Qc = −Lc · ∂ρc

∂t
(2.72)

Since Lc is positive, there must be a loss of mass for heating to occur.
The density of the condensate is related to the molecular weight, mwc and the mole fraction (ratio of

number of molecules of condensate to the total number of molecules) of the gas, qc.

ρc =
mwc

< mw >
· qc · ρ (2.73)

For Saturn, the ammonia near the cloud deck has a mixing ratio of qnh3 = 0.2 · 10−3 (Saturn, p. 114).
The value of Lc for ammonia at -51o C (CRC) is 611 BTU/lb = 611 · 2.3244 J/gm = 1.4· 1010 erg/gm. If
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we assume water has a mixing ratio of qh2o = 1 · 10−3 (Gierasch, 1976) at 10 Bars. The value of Lc is 2.5
·1010 erg/gm. The atmospheric molecular weight is <mw> = 2.14 gm/mole.

∂T

∂t
�=

−Lc

Cp · ρ ·
∂ρc

∂t
(2.74)

∆T = T2 − T1 =
−Lc

Cp · ρ

t2∫
t1

∂ρc

∂t
· dt (2.75)

assume ρc = ρc0 at t = t1 and ρc = 0 at t = t2.

∆T =
−Lc

Cp
· ρc0

ρ
(2.76)

if all the consensable on Saturn were condensed in a time period that is much shorted then the radiative time
constant then the temperature departure would be insignificant for ammonia and slightly more significant
for water

ρnh3

ρ

∣∣∣∣
1 Bar

� 1.59 · 10−3 ∆T = 0.16K (2.77)

ρh2o

ρ

∣∣∣∣
10 Bar

� 7.8 · 10−3 ∆T = 1.4K (2.78)

—————————————————————

2.12 Atmospheric Conduction

∂T

∂t
=

1
ρ · cp

�∇ · κ�∇T � κ

ρ · Cp
∇2T (2.79)

From the Chemical Engineering Handbook κ = µ
(
cp + 5

4R∗/ < mw >
)

= µ·(1.4cp) For Saturn Rg/Cp =
0.32. (NOTE: 1 poise = 1 erg· s/cm3).

T µ κ κcalc

-140o C 5.5 · 10−5 1.01 · 104 0.924 · 104

+300o C 14 · 10−5 3.00 · 104 2.35 · 104

erg· s/cm2 erg/(s· cm · K)
page 3-211 page 3-215

∂T

∂t
� κ

ρ · Cp

(
∂2T

∂y2
+
∂2T

∂z2

)
(2.80)

or in latitude and vertical coordinates this becomes

∂T

∂t
� κ

ρ · Cp

(
1
a2
· ∂

2T

∂φ2
+

1
H2
· ∂2T

∂ ln(p)2

)
(2.81)

For Saturn, the vertical conduction is given by

∂T

∂t
� κ

ρ · Cp

(
1
H2
· ∂2T

∂ ln(p)2

)
(2.82)
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and κ � 104 erg/s/cm/K, H = 5 · 109 cm, and cp = 1.1 · 108 erg/gm/K. If the T (z) profile is adiabatic,
as it is in the troposphere, then the first derivative is constant, ∂T/∂z = 0.7 K/km. then the conduction
term is zero due to ∂T 2/∂y2 = 0. Numerical integration of a Saturnian profile yields

∂2f

∂x2
=
f(x+ dx) + f(x− dx)− 2f(x)

dx2
(2.83)

pressure ρ ∂2T
∂z2

∂T
∂t

mb gm/cm3 K/(km)2 K/year
0.1 0.18·10−7 ±0.9 · 10−3 ±0.03
1 0.18·10−6 −0.2 · 10−2 −0.002
10 0.22·10−5 ±0.2 · 10−2 ±0.0003
100 0.32·10−4 +0.1 +0.8 · 10−4

1000 0.2·10−3 +0.004 +0.6 · 10−5

The conduction heating rate becomes significant in the upper stratosphere; however, the methane heating
rates are ≈ 1 K/year, so the effect can be ignored in most climate models of Saturn.

If there is very little horizontal temperature gradient then ∂T/∂y 	 10o K/10gradient is smooth, there-
fore, ∂T 2/∂y2 = 0

∂T

∂t
� κ

ρ · Cp · a2

(
∂2T

∂φ2

)
(2.84)

For Saturn κ � 104 erg/s/cm/K, cp = 1.1 · 108 erg/gm/K and a = 6 · 109 cm. If the T (z) profile is adiabatic,
as it

∂T

∂t
� 2.53 · 10−24

ρ

(
∂2T

∂φ2

)
for ρ in gm/cm3 (2.85)

pressure ρ κ
ρ·cp·a2

∂T
∂t

mb gm/cm3 radians2/sec K/year
0.1 0.18·10−7 1.41 · 10−16 1.2 · 10−5

1 0.18·10−6 1.41 · 10−17 1.2 · 10−6

10 0.22·10−5 1.15 · 10−18 9.4 · 10−8

100 0.32·10−4 7.91 · 10−20 6.5 · 10−9

1000 0.2·10−3 1.27 · 10−20 1.0 · 10−9

In the previous table we used an upper limit of ±10 K per 5 degrees of latitude in a bowl shape

∂T

∂t

∣∣∣∣
+

=
−10K

5o
=

−10K
5o · π/180

=
−360
π

K
radian

(2.86)

∂T

∂t

∣∣∣∣
−

=
+10K

5o
=

+10K
5o · π/180

=
+360
π

K
radian

(2.87)

∂2T

∂t2
=

∂T
∂t

∣∣∣∣
+

∂T
∂t

∣∣∣∣
−

5o · π/180
=

1
5

3602

π2
� 2.6 · 103 K

radian2 (2.88)
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2.13 Vertical Quadrature for Sounding

2.13.1 Layer and Level definitions

We will assume that the within the top-layer any function we are considering is constant (e.g., temperature
is isothermal) and goes from the top of atmosphere (TOA) to the first pressure level. In the UMBC model,
for example, the TOA is specified implicitly as 0.005 mb and the first pressure level is 0.016 mb. Thus the
top layer is defined from 0.005 ≤ p ≤ 0.016.

2.13.2 Quadrature formula

Integral quantities can be represented by a midpoint rule integration (see PHYS 640 notes, Chapter 5).

P∫
p=TOA

f(p)dp � f̄(1) (p(1)− p(TOA)) +
LBOT∑
L=2

f̄(peff (L)) · (p(L)− p(L− 1)) (2.89)

where, f(peff ) is the function evaluated at a midpoint, peff (L), within the layer (see Section 2.13.4). For
radiative transfer we employ the thin layer approximation and consider state variables such as temperature
and gravity to be adequately described the value at the effective level within the layer. Quantities such as
density are computed as an integral quantity (layer column density given in molecules/cm2) within the layer
boundaries, defined by the level above and below the layer.

For temperature retrievals it is more stable to perturb the temperature at levels and convert these tem-
peratures to layer quantities. The simplest conversion is to average the temperatures at the layer boundaries
(the levels). This is a 2-point running mean and reduces the vertical dimension by one. That is, information
is lost in the transformation and this implies that it is not possible to convert layer temperatures back to
levels.

The subtleties of layers and level conversion tends to be lost in most operational and scientific environ-
ments.

2.13.3 The UMBC 100 level model

We would like to have a pressure grid that works for both accurate radiative transfer, in which quantities are
defined for a layer, and perturbation functions, in which certain quantities (e.g., temperature) are defined
on levels. This is a subtle point, but it really has to do with stability of the vertical quadrature upon
differentiation, since most inversion methods rely on derivative of the radiative transfer grid. Therefore, we
need to define a pressure grid in which the layer quantities and level quantities are related in a rational
manner.

In Fig. 2.1 the idea is illustrated. The level pressure grid is defined by pressure levels, p(P ). The layer
quantities are defined for a pressure level that represents the layer. In this section we will derive the effective
pressure level, peff .

In the AIRS algorithm we have pressure and temperatures defined on 101 levels, P (L), T (L), L = 0, 100
and 100 layers. P (0) is chosen to be at a level where we have no significant absorption. In our current
algorithms, P (0) is equal to 0.005 mb. We do not carry the top level within the code or data files, so the
value of T (0) is implied from the temperature profile, T (1 : 100).

2.13.4 Derivation of peff (L)

If the layer is thin, then we can assume that the scale height is a constant over the layer, H(p) � H(peff (L)) ≡
H(L), where peff is a pressure level within the layer. The total thickness of the layer can then be written as

∆z(L) � H(L) · loge

(
p(L− 1)
p(L)

)
(2.90)

and if ∆p(L)	 p(L) then
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p(1)Cw(peff(2)), Co(peff(2))

p(2)

p(3)

p(4)

p(5)

p(6)

peff(1)

peff(2)

peff(3)

peff(4)

peff(5)

peff(6)

ptop

Cw(p(2)), Co(p(2))

Figure 2.1: Example of 6 level pressure grid

∆z(L) ≈ H(L) · ∆p(L)
p(L)

(2.91)

since the logarithm can be approximated by the first two terms of the expansion

loge(1 + ε) = ε− 1
2
ε2 +

1
3
ε3 − 1

4
ε4 + . . . ≈ ε for|ε| 	 1 (2.92)

The thin layer approximation (i.e., the temperature, gravity and molecular weight is constant within
the layer, therefore, the layer can be represented by its scale height) allows a simple expression for the height
associated with any pressure within the layer

z(p) = z(L)−H(L) · loge

(
p

p(L)

)
(2.93)

or equivalently find the pressure level corresponding to any height

p(z) = p(L) · e−
(

z−z(L)
H(L)

)
(2.94)

The average pressure within a layer, p can be written in terms of p(z) given in Eqn. 2.94, which is equal
to

p(L) ≡

z(L−1)∫
z(L)

p(z) · dz

z(L−1)∫
z(L)

dz

=
−H(L) · (p(L− 1)− p(L))

z(L− 1)− z(L)
=

∆p(L)

loge

(
p(L)

p(L−1)

) (2.95)

where ∆p(L) ≡ p(L)− p(L− 1) and noting that
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p(L)

z2∫
z1

e
−
(

z−z(L)
H(L)

)
· dz = −H(L) · (p(z2)− p(z1)) (2.96)

Therefore, the average pressure can be computed directly from the layer boundary levels. We define the
effective pressure as the layer mean value, peff (L) = p(L). The value of z(peff (L)) is then given by Eqn.
2.93.

peff (L) ≡ p(L) =
∆p(L)

loge

(
p(L)

p(L−1)

) (2.97)

where, the interpolation factor is given by

r(L) =
loge (peff (L)/p(L− 1))

loge (p(L)/p(L− 1))
(2.98)
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Table 2.6: Adiabatic and Auto-convective lapse rates
Γa Γc

Adiabatic auto-convective
< g > Cp Lapse Rate Rg Lapse Rate
cm/s2 J/gm/K K/Km J/gm/K K/Km

Venus 889.89 0.8501 10.468 0.18892 47.104
Earth 979.86 1.0040 9.760 0.28710 34.130
Mars 374.10 0.8312 4.500 0.18892 19.802

Jupiter 2425.61 12.3591 1.963 3.74518 6.477
Saturn 1000.09 14.0129 0.714 3.89246 2.569
Uranus 880.07 13.0137 0.676 3.61491 2.435

Neptune 1110.46 13.0137 0.853 3.61491 3.072
Titan 135.80 1.0440 1.301 0.29000 4.683
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Table 2.7: AIRS Science Team 100 layer pressure grid
L p(L− 1) p(L) peff (L) loge

(
p(L)

p(L−1)

)
∆p(L)
p(L) r(L)

1 0.0050 0.0161 0.0095 1.16938 0.68944 0.45182
2 0.0161 0.0384 0.0257 0.86924 0.58073 0.46401
3 0.0384 0.0769 0.0554 0.69445 0.50065 0.47118
4 0.0769 0.1370 0.1041 0.57748 0.43869 0.47600
5 0.1370 0.2244 0.1771 0.49345 0.38948 0.47948
6 0.2244 0.3454 0.2806 0.43127 0.35032 0.48206
7 0.3454 0.5064 0.4208 0.38262 0.31793 0.48408
8 0.5064 0.7140 0.6043 0.34356 0.29076 0.48570
9 0.7140 0.9753 0.8379 0.31186 0.26792 0.48702

10 0.9753 1.2972 1.1286 0.28522 0.24815 0.48812
11 1.2972 1.6872 1.4837 0.26286 0.23115 0.48905
12 1.6872 2.1526 1.9105 0.24361 0.21620 0.48986
13 2.1526 2.7009 2.4164 0.22691 0.20301 0.49055
14 2.7009 3.3398 3.0091 0.21233 0.19130 0.49116
15 3.3398 4.0770 3.6962 0.19945 0.18082 0.49169
16 4.0770 4.9204 4.4855 0.18803 0.17141 0.49217
17 4.9204 5.8776 5.3848 0.17776 0.16286 0.49260
18 5.8776 6.9567 6.4020 0.16856 0.15512 0.49298
19 6.9567 8.1655 7.5450 0.16021 0.14804 0.49333
20 8.1655 9.5119 8.8216 0.15263 0.14155 0.49364
21 9.5119 11.0038 10.2397 0.14570 0.13558 0.49393
22 11.0038 12.6492 11.8074 0.13935 0.13008 0.49419
23 12.6492 14.4559 13.5325 0.13351 0.12498 0.49444
24 14.4559 16.4318 15.4228 0.12812 0.12025 0.49467
25 16.4318 18.5847 17.4862 0.12312 0.11584 0.49487
26 18.5847 20.9224 19.7305 0.11848 0.11173 0.49507
27 20.9224 23.4526 22.1634 0.11416 0.10789 0.49524
28 23.4526 26.1829 24.7927 0.11013 0.10428 0.49541
29 26.1829 29.1210 27.6259 0.10635 0.10089 0.49557
30 29.1210 32.2744 30.6707 0.10281 0.09771 0.49571
31 32.2744 35.6505 33.9345 0.09949 0.09470 0.49585
32 35.6505 39.2566 37.4246 0.09636 0.09186 0.49598
33 39.2566 43.1001 41.1484 0.09341 0.08918 0.49611
34 43.1001 47.1882 45.1133 0.09062 0.08663 0.49622
35 47.1882 51.5278 49.3262 0.08798 0.08422 0.49633
36 51.5278 56.1260 53.7942 0.08548 0.08193 0.49644
37 56.1260 60.9895 58.5241 0.08310 0.07974 0.49654
38 60.9895 66.1253 63.5228 0.08085 0.07767 0.49663
39 66.1253 71.5398 68.7971 0.07870 0.07569 0.49672
40 71.5398 77.2396 74.3533 0.07666 0.07379 0.49680
41 77.2396 83.2310 80.1980 0.07471 0.07199 0.49688
42 83.2310 89.5204 86.3375 0.07285 0.07026 0.49697
43 89.5204 96.1138 92.7780 0.07107 0.06860 0.49704
44 96.1138 103.0172 99.5256 0.06936 0.06701 0.49711
45 103.0172 110.2366 106.5862 0.06773 0.06549 0.49717
46 110.2366 117.7775 113.9654 0.06617 0.06403 0.49725
47 117.7775 125.6456 121.6692 0.06467 0.06262 0.49730
48 125.6456 133.8462 129.7026 0.06323 0.06127 0.49738
49 133.8462 142.3848 138.0715 0.06184 0.05997 0.49742
50 142.3848 151.2664 146.7809 0.06051 0.05872 0.49747
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L p(L− 1) p(L) peff (L) loge

(
p(L)

p(L−1)

)
∆p(L)
p(L) r(L)

51 151.2664 160.4959 155.8357 0.05923 0.05751 0.49752
52 160.4959 170.0784 165.2408 0.05799 0.05634 0.49759
53 170.0784 180.0183 175.0012 0.05680 0.05522 0.49765
54 180.0183 190.3203 185.1216 0.05565 0.05413 0.49767
55 190.3203 200.9887 195.6060 0.05454 0.05308 0.49772
56 200.9887 212.0277 206.4589 0.05347 0.05206 0.49778
57 212.0277 223.4415 217.6846 0.05243 0.05108 0.49783
58 223.4415 235.2338 229.2872 0.05143 0.05013 0.49785
59 235.2338 247.4085 241.2697 0.05046 0.04921 0.49792
60 247.4085 259.9691 253.6371 0.04952 0.04832 0.49793
61 259.9691 272.9191 266.3918 0.04861 0.04745 0.49796
62 272.9191 286.2617 279.5373 0.04773 0.04661 0.49801
63 286.2617 300.0000 293.0774 0.04688 0.04579 0.49803
64 300.0000 314.1369 307.0145 0.04605 0.04500 0.49806
65 314.1369 328.6753 321.3516 0.04524 0.04423 0.49809
66 328.6753 343.6176 336.0912 0.04446 0.04349 0.49814
67 343.6176 358.9665 351.2365 0.04370 0.04276 0.49816
68 358.9665 374.7241 366.7887 0.04296 0.04205 0.49822
69 374.7241 390.8926 382.7514 0.04224 0.04136 0.49824
70 390.8926 407.4738 399.1261 0.04154 0.04069 0.49825
71 407.4738 424.4698 415.9144 0.04086 0.04004 0.49827
72 424.4698 441.8819 433.1172 0.04020 0.03940 0.49834
73 441.8819 459.7118 450.7375 0.03956 0.03878 0.49838
74 459.7118 477.9607 468.7764 0.03893 0.03818 0.49841
75 477.9607 496.6298 487.2360 0.03832 0.03759 0.49839
76 496.6298 515.7200 506.1142 0.03772 0.03702 0.49846
77 515.7200 535.2322 525.4158 0.03714 0.03646 0.49845
78 535.2322 555.1669 545.1392 0.03657 0.03591 0.49846
79 555.1669 575.5248 565.2853 0.03601 0.03537 0.49847
80 575.5248 596.3062 585.8550 0.03547 0.03485 0.49848
81 596.3062 617.5112 606.8472 0.03494 0.03434 0.49854
82 617.5112 639.1398 628.2631 0.03443 0.03384 0.49858
83 639.1398 661.1920 650.1041 0.03392 0.03335 0.49856
84 661.1920 683.6673 672.3672 0.03343 0.03287 0.49860
85 683.6673 706.5654 695.0546 0.03294 0.03241 0.49858
86 706.5654 729.8857 718.1617 0.03247 0.03195 0.49868
87 729.8857 753.6275 741.6927 0.03201 0.03150 0.49869
88 753.6275 777.7897 765.6464 0.03156 0.03107 0.49863
89 777.7897 802.3714 790.0154 0.03112 0.03064 0.49876
90 802.3714 827.3713 814.8073 0.03068 0.03022 0.49873
91 827.3713 852.7880 840.0157 0.03026 0.02980 0.49873
92 852.7880 878.6201 865.6404 0.02984 0.02940 0.49873
93 878.6201 904.8659 891.6791 0.02943 0.02901 0.49875
94 904.8659 931.5236 918.1295 0.02903 0.02862 0.49882
95 931.5236 958.5911 944.9920 0.02864 0.02824 0.49883
96 958.5911 986.0666 972.2646 0.02826 0.02786 0.49880
97 986.0666 1013.9476 999.9442 0.02788 0.02750 0.49877
98 1013.9476 1042.2319 1028.0234 0.02751 0.02714 0.49891
99 1042.2319 1070.9170 1056.5110 0.02715 0.02679 0.49882

100 1070.9170 1100.0000 1085.3951 0.02679 0.02644 0.49883
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2.13.5 Some Issues with Converting Layers to Levels

The UMBC rapid transmittance algorithm (RTA) and radiative transfer (RT), which assumes that each layer
is isothermal, uses the layer temperatures at the effective layer pressure of Peff (L) (see Eqn. 2.97) defined
as

peff (L) ≡ p(L) =
∆p(L)

loge

(
p(L)

p(L−1)

) (2.99)

The AIRS retrieval algorithm builds functions (trapezoids) on the level temperatures and utilizes a
subroutine, meantemp(), that defines the transformation from level temperatures to layer temperatures. The
current definition in this subroutine is

T (1) ≡ T (1) (2.100)

T (L) ≡ (T (L) + T (L− 1))
2

for L = 2, N (2.101)

In this definition we are assuming that the top layer is isothermal and the remaining layers are a simple
average of the layer boundary temperatures. In the retrieval system we are always converting from levels →
layers and we never convert from layers → levels. The conversion from levels → layers is a 2-point running
mean, which implies that information has been lost.

Over time many problems have emerged over this confusion in terms. If the profiles were stored as layers,
could we reproduce the level temperatures used by the retrieval. The definition in Eqn. 2.100 is reversible,
and is given by

T (1) ≡ T (1) (2.102)
T (L) = 2 · T (L)− T (L− 1) for L = 2, N (2.103)

however, the transformation will cause unrealistic fine structure in T (L). In Fig. 2.2 we take an atmospheric
profile defined on layers, TA(L) = T (L), shown in black but it is overwritten by green curve discussed in a
moment. We compute the level temperatures using Eqn. 2.102, shown in red. Then we then apply Eqn.
2.100 to the red curve to produce the green curve, which exactly matches, and overwrites, the black curve.
While Eqn. 2.102 is exact at the Pobs(L) levels, it is not a useful inverse because it introduces irrational fine
structure. This is because it is actually defined on the Peff levels in order to represent the extrema in TA(L).

A more realistic approach is to compute the level temperatures by interpolation. In Fig. 2.3, on the
left hand side, the original layer temperatures are shown in black and the level temperature, derived by
interpolation, is shown in red. Again, we apply Eqn. 2.100 to the red curve to produce the green curve. On
the right hand side the error introduced by interpolation is shown (that is, the green curve minus the black
curve). Notice that this method of going from layers → levels → levels repeatedly smooths the feature near
1 mb. There is also an error introduced at the top level due to a discontinuity caused by the top layer being
isothermal.

We can improve the situation by using a cubic spline (with endpoint derivatives are equal to zero) to
represent the inflection point at 1 mb in the new space. In Fig. 2.4 the cubic spline fit to the layer profile
(in black, but overwritten), TA(L) is shown in red and application of Eqn. 2.100 to the red curve is shown in
green. The error curve (green minus black) shows this method is an improvement at 1 mb but still has the
discontinuity at the top.

Finally, we could modify the inversion equation to eliminate the error at the top. First we define the
interpolation point for the top level from a simple average of the effective pressure levels.

Pint ≡ log10(Pobs(1))− log10(Peff (1))
log10(Peff(2))− log10(Peff (1))

(2.104)

T (1) ≡ T (1) + Pint ·
(
T (2)− T (1)

)
(2.105)

T (L) = 2 · T (L)− T (L− 1) for L = 2, N (2.106)
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Figure 2.2: Example of the reversible transformation given in Eqn. 2.102

Similarly, we extrapolate the layer temperature from the top two level temperatures. Here we are
assuming a constant lapse rate, and not an isothermal layer.

Pint ≡ log10(Peff (1))− log10(Pobs(1))
log10(Pobs(2))− log10(Pobs(1))

(2.107)

T (1) ≡ T (1) + Pint · (T (2)− T (1)) (2.108)

T (L) =
1
2
· (T (L) + T (L− 1)) for L = 2, N (2.109)

templay2 = FLTARR(100) pint = (alogpeff(0) - alogpobs(0))/(alogpobs(1)-alogpobs(0)) templay2(0) =
templev(0) + (templev(1)-templev(0))*pint for L = 1, 99 do begin templay2(L) = (templev(L) + templev(L-
1))/2.0 endfor

While this eliminates the error and oscillations at the top. The inflection point induces oscillations for
the remainder of the profile. It is the failure to capture fine structure between layer and level boundaries
(inflection points) that causes the oscillations.

It is for this reason, the level temperatures are used as the quadrature for the inversion and layer
temperatures are used for the radiative transfer. If one writes the level temperatures that we used in the
minimization process and provides the definition of transformation from level’s → layer’s then both levels
and layers can be derived. While an interpolation scheme (e.g., linear or cubic spline) can be employed to
convert layer’s → level’s, it should be avoided if at all possible.

2.13.6 Bottom Layer and How to Handle Topography

The bottom layer must be interpolated/extrapolated for the real surface pressure. In the AIRS code and
radiative transfer algorithms you MUST use the function src gsfc/lsurface.F to find the bottom level. This
function IS THE DEFINITION of how the radiances WERE MINIMIZED. Any other method of determining
the lowest level is WRONG!
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Figure 2.3: Example of linear interpolation of layer to level temperatures

The bottom level, Lbot, is defined such that a layer is never less that 5 mb in thickness. That is, Lbot is
the first level in which

Ps − P (Lbot) ≥ 5 mb (2.110)

Depending on the value of Ps the bottom level can be above or below the real surface. The radiative transfer
channel averaged models will be computed on full layers and then the optical depth will be adjusted by a
factor

BLMULT =
Ps − P (Lbot − 1)

P (Lbot)− P (Lbot − 1)
(2.111)

When programming in MATLAB or IDL it may be easier to make an array to do this. In IDL, given
LBOT layers (FORTRAN indexing) it looks like

PLMULT (L) = 1.0 for L = 0, LBOT − 2
= BLMULT for L = LBOT − 1
= 0.0 for L > LBOT

Since the bottom layers of P (L) are about 25 mb thick for the UMBC model, the range of the multiplier,
BLMULT, is 5/25 ≤ BLMULT < 30/25. This is illustrated in Fig. 2.6.

The temperature at the bottom level, T(Lbot), is an interpolation (if Ps ≤ P (Lbot)) or an extrapolation
(if Ps > P (Lbot)) of T(Lbot-1) and the temperature at Ps, Tsurfair. The temperature at Lbot, T (Lbot),
should never be used except to compute Tsurfair.

In the AIRS code, the subroutine meantemp() converts level temperatures to layer averaged temper-
atures, T (L). This is the definition used in minimization of the radiances, so that no other definition is
correct. In this routine, the bottom layer temperature, T (Lbot), is computed as the average of T (Lbot − 1)
and Tsurfair. The top layer is considered isothermal and T (1) = T (1). Currently, meantemp() simply returns
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Figure 2.4: Example of cubic spline interpolation to convert layer to level temperatures

the average of the layer boundary temperatures for the other layers. In some distant future we might change
meantemp() to include sub-layer structure. That is why, meantemp() should be wired into any of the software
RTA’s.

All levels below Tbot are ignored, although we usually write in an isothermal value just so it doesn’t
have arbitrary stuff in there.

Gas amounts are the # of molecules per full layer that is bounded by P (Lbot − 1) and P (Lbot). When
computing layer column densities the bottom layer amount is adjusted by BLMULT before adding to the
thick layer column density. For example, if wcd(L) is the layer column density of water, a FORTRAN code
to compute the total precipitable water, in molecules/cm2 is

totprecip = BLMULT*wcd(Lbot)
do L = 1, Lbot-1
totprecip = totprecip + wcd(Lbot)

enddo

Transmittances returned for the bottom layer are not extrapolated/interpolated. This is inconsistent,
but that is the way it is since the radiative transfer uses τ(Lbot)−τ(Lbot−1) and we don’t want to propagate
the confusion any further. Plus it requires an exponential to do it correctly and that wastes time.

A final note. In the call’s to UMBC [and MIT] RTA’s we pass in the unadjusted level temperatures and
the full layer column densities. The RTA’s call or emulate meantemp() to get the layer average temperature.
The UMBC routine init rta() returns the layer average temperature, Tavg(), for the use in other routines.

The user does not adjust the state externally to these calls. Internally, the RTA’s DO NOT adjust the
bottom layer gas amounts. In this way, the RTA computes the optical depth for the full bottom layer. After
this is computed, the optical depth is multiplied by BLMULT before the transmittance is computed.
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Figure 2.5: Example of modification to reversible form to eliminate discontinuity at the top.

Figure 2.6: Illustration of the range of the bottom multiplied, BLMULT, for different surface pressures

interpolated case extrapolated case
(BLMULT < 1) (BLMULT > 1)

___________________ Pobs(Lbot-1) ____________________ Pobs(Lbot-1)

------------------- Psurf

___________________ Pobs(Lbot) ____________________ Pobs(Lbot)

-------------------- Psurf

2.14 Topography Correction for Surface Pressure from a Model

In terrestrial remote sounding applications the surface pressure from a model is usually more accurate than
can be retrieved. For example, the NOAA aviation forecast model (AVN) has an RMS error of about 4 mb
in most situations. The model is usually computed at low resolution (1 x 1◦) and needs to be adjusted for
topography. For the AIRS processing we use a digital elevation map (DEM) for the center of the AIRS 13.5
km field-of-view.
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2.14.1 AIRS Science Team Method

The Aviation (AVN) forecast is a 1◦x1◦ model that defines surface pressure (AVN variable name “PRES:sfc”
≡ Pref ) and air temperature (AVN variable name “TMP:30-0 mb above gnd” ≡ Tref ) at the geopotential
height of the surface (AVN variable “HGT:sfc” ≡ Href ).

The elevation above the reference geode, z, is specified from a digital elevation model(DEM) for the
observed footprint. The AVN forecast values of Pref , Tref , and Href are interpolated to the footprint location
and time and then adjusted for the topography given within the AIRS 13.5 km footprint as described below.
To find the pressure at the elevation z we can employ the 1st law of thermodynamics

T (z) = Tref ·
(
P (z)
Pref

)Rg
Cp

= Tref ·
(
P (z)
Pref

)κ

(2.112)

Eqn. 2.112 can be rewritten as

P (z) = Pref ·
(
T (z)
Tref

) 1
κ

(2.113)

If we assume an adiabatic lapse rate, the temperature at an arbitrary elevation in the model, T (z), is
given by

T (z) = Tref +
∂T

∂z
(z −Href ) = Tref − g

cp
· (z −Href ) (2.114)

where ∆z ≡ z −Href . Substituting Eqn. 2.114 into Eqn. 2.113 gives

P (z) = Pref ·
(

1 +
z −Href

Tref
· g
cp

) 1
κ

(2.115)

• z and Href specified in meters

• κ−1 = Rg

Cp
= 3.5 (for dry air)

• g = 9.80665 m/s2

• cp = 1005.0 J/kg/K = 1005.0 m2/s2/K

In the current AIRS science team implementation the value of κ used is the value for dry air given
above. This assumes, Rg = Rd. We could use the model moisture field to compute κ(rw) where rw is the
mass mixing ratio defined in the model.

2.14.2 Method proposed by AER (pg. 66 of the CrIS ATBD)

Using the local scale height defined by Rg · T/g, we can write the change in pressure w.r.t. the change in
elevation as

P (z) = Pref · exp
[ −g
Rg · T (z −Href )

]
(2.116)

= Pref · exp
[ −g
Rd · Tv

(z −Href )
]

(2.117)

where Rd is the dry air gas constant, Rd = 287.04 J/kg/K and g is the gravitational acceleration at hm =
(z +Href )/2, z is the elevation, and Href is the model elevation at Pref . In order to use the dry-air average
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molecular weight in Eqn. 2.117 we need to employ the virtual temperature, Tv, (see Section 3.4.5), defined
by

Tv = Tref · 1 + rw/ε

1 + rw
(2.118)

where rw is the mass mixing ratio of water, ε ≡ mww

mwd
� 0.622 is the ratio of the molecular weight of water to

the molecular weight of dry air.
Note that this method does not correct for T (z), as in the previous section, but does correct for variability

of water. This method will provide accurate answers for regions over which the scale height, Rg · T/g =
Rd · Tv/g, is constant.
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Chapter 3

Define Geophysical State for Retrieval

“One should never ever doubt, what one is not sure about.” Character Willie Wonka in the movie Willie
Wonka and the Chocolate Factory

3.1 Traditional Notation of the Geophysical State

In general, to compute radiances we need a state vector, generally written as X, in which many parameters
are required.

Table 3.1: Typical geophysical parameters to be retrieved
T (p) vertical temperature profile
q(p) vertical water vapor profile (≈ 8 g/kg @ surface)
L(p) vertical liquid water profile
O3(p) vertical ozone profile (≈ 8 ppmv @ 6 mb)
Ts surface temperature
ε(ν) spectral surface emissivity, (e.g., 0.95 @ 800 cm−1)
ρ�(ν) spectral surface reflectivity of solar radiation
Pcld cloud top pressure for ≤ 2 cloud levels
αcld,fov cloud fraction for ≤ 2 cloud levels and 9 FOV’s
CO2 total column carbon dioxide (≈ 363 ppmv)
CH4(p) methane profile (≈ 1.65 ppmv)
CO(p) carbon monoxide profile (≈ 0.11 ppmv)
Ps surface pressure (f/ forecast)
θ satellite zenith angle
θ� solar zenith angle
εcld,ν spectral cloud emissivity for ≤ 2 cloud levels

other gases: N2(p), O2(p), C2H2(p), CFC’s, etc.

In Fig. 3.1 the skin temperature, Ts, Temperature profile, T (p) and moisture q(p) in g/M3 for the US
Standard Atmosphere (1976). The saturation moisture, ρs(T ), is also shown as a dashed line. The nominal
moisture case is shown as a solid line and the water vapor burden for this atmosphere is 16.6 kg/M3. The
1% statistical low and high value of moisture is shown as dotted lines with 0.15 kg/M3 and 145.6 kg/M3,
respectively.

A number of geophysical parameters are assumed known, that is they have preset values and are not
considered error sources in the retrieval. We will call these X̂L

53
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Figure 3.1: US Standard Atmospheric profiles of temperature, moisture, and ozone.

Figure 3.2: Reference profiles of gases allowed to vary in UMBC model
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Table 3.2: Geophysical Parameters Held Constant in UMBC model
Ps surface pressure (f/ forecast)
θ satellite zenith angle
θ� solar zenith angle
N2(p) molecular nitrogen profile (78.08%)
O2(p) molecular oxygen profile (20.9%)
Ar(p) argon profile (0.9%)
C2H6(p) ethane profile
C2H2(p) acetylene profile
C3H8(p) propane profile
NH3(p) ammonia profile (4 ppbv)
N2O(p) Nitrous Oxide profile (308 ppbv)
NO(p) Nitric Oxide profile (0.38 ppbv)
NO2(p) Nitrogen Dioxide profile (1 ppbv)
H2S(p) hydrogen sulfide profile (0.03 ppbv)
SO2(p) sulfur dioxide profile (0.15 ppbv)
HNO3 (5.85 ppbv)
CCl4 Carbon tetra-chloride (0.13 ppbv)
CCl2F (0.13 ppbc)
CCl2F2 (0.231490 ppbv)
CF4 (0.006 ppbv)
CClF3 (0.0005 ppbv)

Figure 3.3: Vertical profiles of gases held constant in UMBC model
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Figure 3.4: Vertical profiles of gases held constant in UMBC model
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The chlorofluorocarbons are some of the most important “fixed” gases in the UMBC reference profiles.
The Dupont nomenclature is F-xy, where x is the number H atoms + 1 and y is the number of fluorine atoms.
If there are two or more carbon atoms a 3rd digit is used, where the 3rd digit is the number of carbon atoms
minus one.

Table 3.3: Common Chlorofluorocarbons
F-11 CFC-11 CCl3F CFCl3
F-12 CFC-12 CCl2F2 CF2Cl2
F-22 CFC-22 CHClF2 CF2HCl
F-113 CFC-113 CCl2FCClF2

F-114 CFC-114 CCF2CClF2

F-12 can undergo photolysis and is the principle chlorofluorocarbon responsible for destruction of ozone
in the stratosphere.

CF2Cl2(F − 12) + hν(λ ≤ 240nm) → CF2Cl + Cl (3.1)
Cl +O3 → ClO +O2 (3.2)
ClO +O → Cl +O2 or (3.3)
O3 +O → 2O2 (3.4)

Table 3.4: Emission rates, 106 kg/year, of common solvents
1979 Chemical common

emission Common Name Symbol use
284 F-11 CFCl3 refrigerators
341 F-12 CF2Cl2 refrigerators
533 methyl chloroform CH3CCl3 solvent
228 carbon tetrachloride CCl4 solvent, reagent

methly chloride CH3Cl
459 trichloroethene C2HCl3 solvent
667 perchloroethene C2Cl4 solvent
356 dichloromethane CH2Cl2

3.2 Definition and computation of the tropopause

The definition of the tropopause is given in section 5.1.1 of the “Radiosonde Code” (1976, page B-2). The
first tropopause is defined as “the lowest level at which the lapse rate decreases to 2 C/Km or less, and the
average lapse rate from this level to any level within the next higher 2 km does not exceed 2 C/km. The
average lapse rate is the difference between the temperature at the respective end points divided by the height
interval, irrespective of the lapse rate variations in the layer between the end points.”

A library subroutine (src gsfc/tropopause.F) was written to compute this from a profile.

subroutine tropopause(jdpro, numlev, Pobs, Tair, Ptrop, iret)
implicit none

c input variables
c ---------------

integer*4 jdpro ! profile ID number (for printout)
integer*4 numlev ! # of levels in this profile
real*4 Pobs(*) ! pressure at levels, L=1,numlev
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real*4 Tair(*) ! temperature at the levels Pobs(L)

c output variables
c ----------------

real*4 Ptrop ! tropopause pressure in milli-bars
integer*4 iret ! return code

c local variables
c ---------------

integer*4 MAXLEV
real*4 Navog, BOLZMANS, Runiv, MD_d
parameter (MAXLEV = 100 )
parameter (Navog=6.02214199E+23)
parameter ( BOLTZMNS = 1.3806503E-16 )
parameter (Runiv=Navog*BOLTZMNS) ! universal gas constant, erg/mole/K
parameter (MW_d = 28.9644) ! gm/mole dry air

real*4 G_std, Rgas
parameter (G_std = 980.665) ! PT99, standard gravity, cm/s^2
parameter (Rgas= Runiv/MW_d) ! erg/gm/K, R of dry air - R*/MW_D

integer*4 L, L1, L2, L0
real*4 Tavg, H0(MAXLEV), z(MAXLEV), Ztrop
real*4 dz, dT, alapse
real*4 lapse(MAXLEV)

iret = 0 ! assume it will work

if(numlev.gt.MAXLEV) then
print 1000, numlev, MAXLEV
L = 7
call softexit(’TROPOPAU’,L)

endif

c determine limits to test over
c -----------------------------

do L = 1,numlev
if(Pobs(L).lt. 10.0) L1 = L
if(Pobs(L).lt.550.0) L2 = L

enddo

c convert Pressure levels to z in Km’s
c ------------------------------------

z(numlev) = 0.0
do L = numlev-1,1,-1
Tavg = 0.5*(Tair(L)+Tair(L+1))
H0(L) = -1.0E-05*Rgas*Tavg/G_std ! - scale height in Km
z(L) = H0(L)*ALOG(Pobs(L)/Pobs(numlev))

enddo

L0 = 0
do L = L2,L1,-1
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dz = z(L)-z(L+1) ! z decreases with increasing L
dT = Tair(L)-Tair(L+1) ! dT
lapse(L) = -dT/dz
if(L0.eq.0) then
if(lapse(L).le.2.0) L0 = L+1 ! lowest level, lapse <= 2 deg/Km

else
dz = z(L)-z(L0)
if(dz.gt.2.0) goto 100 ! met average criteria
dT = Tair(L)-Tair(L0)
alapse = -dT/dz
if(alapse.gt.2.0) L0 = 0 ! does not meet average criteria

endif
enddo

100 if(L0.eq.0) then
print 110, jdpro
do L = L1,L2
print 120, Pobs(L),Tair(L),z(L),H0(L),lapse(L)

enddo
iret = 1
Ptrop = 0.0
Ztrop = 0.0
goto 900

endif

c z(L0) lapse rate <= 2.0
c z(L0+1) lapse rate > 2.0
c H0(L) is value (negative) of scale height between z(L) and z(L+1)
c
c 2.0 = lapse(L0) + (lapse(L0+1)-lapse(L0))*(ztrop-z(L0))/(z(L0+1)-z(L0))
c ztrop = z(L0) + (z(L0+1)-z(L))*(2.0-lapse(L0))/(lapse(L0+1)-lapse(L0))
c alapse = (2.0-lapse(L0))/(lapse(L0+1)-lapse(L0))
c Ztrop = z(L0) + (z(L0+1)-z(L0))*alapse

Ztrop = z(L0)
Ptrop = Pobs(numlev)*EXP(Ztrop/H0(L0))

900 return
110 format(’tropopause: *** ERROR cannot find tropopause level ***’,/,

1 ’profile =’,i7,/,
2 ’ Pobs(L) T(L) H0(L) z(L) G(L)’)

120 format(f8.1,f7.1,f7.2,f7.2,f7.3)
1000 format(’tropopause: numlev > MAXLEV ’,2i4)

end

3.3 Satellite Observations Along a Vertical Slant Path

This section illustrates the concepts of converting retrievals to a uniform vertical grid. While the vertical
grid is the most convenient representation for many applications, it requires trade-offs between swath size
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requirements with data reporting requirements.
Keep in mind that for weather prediction applications the sampling difference between 100 mb and the

surface are of greatest concern, since the atmospheric spatial and temporal variability is greatest in this
region.

When retrievals are performed on an AMSU field of regard (FOR) the atmosphere is sampled along a
slant path. In Fig. 3.5, the satellite is at an altitude of 833 kilo-meters and the solid line from the spacecraft
to the solid line representing the Earth’s surface (solid curved line) is the center of the sampled path. The
point when the slant path intersects the Earth is annotated with the AMSU FOR index number and the solid
vertical lines from these intercepts represent the local normals for those FOR’s. The dotted lines, parallel
to the Earth’s surface, show the vertical level in the atmosphere for 100, 10, 1, 0.1, and 0.01 milli-bars,
respectively (16, 32, 48, 64, and 80 km). The outer edge of the sampled FOR is shown as a dashed line.

Figure 3.5: Example of Slant Path from Satellites

To convert retrievals sampled along the slant path to a local vertical grid can be accomplished via
interpolation; however, the AMSU measurements are not Nyquist sampled and interpolation will introduce
errors. Also, to maintain the swath width requirement will require extrapolation beyond FOR #14.

3.4 Water mixing ratio definitions

The mass density of a species, x, with molecular weight, mwx, number density at altitude z, Nx(z), is given
as

ρx =
mwx ·Nx(z)

Na
grams/cm3 (3.5)

The ratio of molecular weights of water and dry air is usually specified as a constant,
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ε ≡ mww

mwd
= 0.62197. (3.6)

Note that dry air density at the standard temperature and pressure (i.e., surface) is 1/1000 that of water.

ρd(Ps) =
Ps ·mwd

R∗ · Ts
=
N0

Na
·mwd (3.7)

ρd(Ps) = 0.00129 g/cm3 = 1.29 g/liter = 1.29 kg/M3 (3.8)

The level-to-space column density is given by

Cx(z) ≡
∞∫

z

Nx(z) · dz =
Lbot∑
L=1

Nx(L) ·∆z(L) =
Lbot∑
L=1

∆Cx(L) molecules/cm2 (3.9)

3.4.1 Layer column density

We can define the layer column density, ∆Cx, within fixed pressure levels as

∆Cx(L) ≡ Cx(L)− Cx(L− 1) =

z(L)∫
z(L+1)

Nx(z) · dz = Nx(L) ·∆z(L) molecules/cm2 (3.10)

If we solve the hydrostatic equation (Eqn. 2.8) for total mass density in a layer, ρt,

ρt =
−∆p
g ·∆z (3.11)

mass conservation requires that ρt(L) =
∑
x
ρx(L) since the layer is a fixed volume for a given atmospheric

pressure and temperature so that we can equate the total mass density to the sum of mass density due to
dry air and the mass density due to water, it to Eqn. 3.5 then we obtain

∆p(L)
g

≡
z(L)∫

z(L+1)

ρ dz =

z(L)∫
z(L+1)

(ρd + ρw) · dz (3.12)

∆p(L) ·Na

g
≡

z(L)∫
z(L+1)

mwt ·Nt(z) dz =

z(L)∫
z(L+1)

(mwd ·Nd(z) + mww ·Nw(z)) · dz (3.13)

3.4.2 Dalton’s Law

Dalton’s Law (1807, the sum of partial pressures equals the total pressure) can be written as a conservation
of number density (again, the volume is constant for a layer) Nt(L) = Nd(L) +Nw(L)) and substitution of
this into Eqn. 3.13 results in the average molecular weight being a number weighted average (US Std. Atmos.
(1976) pg. 9)

mwt ≡ mwd · Nd

Nt
+ mww · Nw

Nt
=

mwd ·Nd + mww ·Nw

Nd +Nw
(3.14)

Alternatively, Eqn. 3.5 and Eqn. 3.13 could be used to solve for the average inverse molecular weight as a
density weighted mean (reduced mass)

1
mwt

≡
1

mwd
· ρd + 1

mww
· ρw

ρd + ρw
(3.15)
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Figure 3.6: John Dalton (born Sep. 6, 1766) (from http://www-gap.dcs.st-and.ac.uk/ history/ Mathemati-
cians)

Combining Eqn. 3.5 and Eqn.3.13

∆p(L) ·Na

g
= mwt ·∆Ct(L) = mwd ·∆Cd(L) + mww ·∆Cw(L) (3.16)

∆Cd(L) =
∆p(L) ·Na

mwd · g − mww

mwd
·∆Cw(L) (3.17)

Since water is usually less than 2% of the total column density the dry column density can be approximated
as

∆Cd(L) � ∆Ct(L) =
Ps ·Na

mwd · g ·
∆p(L)
Ps

(3.18)

In the AIRS retrieval program there is a variable called CLDAIR which is defined as

CLDAIR ≡ Ps ·Na

mwd · g =
1.01325 · 106 · 6.022045 · 1023

980.665 · 28.964
= 2.14823 · 1025 molecules/cm2 (3.19)

∆Cd(L) � 2.14823 · 1025 · ∆p(L)
Ps

molecules/cm2 (3.20)

� 35.673 · ∆p(L)
Ps

moles/cm2 (3.21)

(3.22)

3.4.3 Absolute and Specific Humidity

The absolute humidity is given by ρw and the specific humidity is defined as the mass of water vapor per
unit mass of air

q ≡ ρw

ρ
� ρw

ρd + ρw
(3.23)
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and in terms of column density

q =
mww

mwt
· ∆Cw(L)

∆Ct(L)
= ε · ∆Cw(L)

∆Ct(L)
(3.24)

and is expressed with the partial pressure of water, e and volumetric mixing ratio, as

ρd + ρw =
mwd · (P − fwe)

R∗T
+

mwwfwe

R∗T
=

mwd · (P − 0.37803fwe)
R∗T

(3.25)

which is simplified using (mwd −mww)/mwd = 1− ε = 0.37803

q =
ρw

ρ
=

εfwe

P − (1− ε)fwe
� ε · e

P
(3.26)

3.4.4 Mass Mixing Ratio

The mass mixing ratio of water is defined as the mass of water vapor per unit mass of dry air.

rw(L) ≡ ρw(L)
ρd(L)

=
mww

mwd
· ∆Cw(L)

∆Cd(L)
= ε · ∆Cw(L)

∆Cd(L)
(3.27)

Which can be written in terms of fixed gases, water vapor, and ozone as

rw(L) � ε ·∆Cw(L) ·
[
CLDAIR ·∆p(L)

Ps
− ε ·∆Cw(L)

]−1

(3.28)

If we assume that only fixed gases and water vapor are important (i.e., ρ = ρd+ρw) then the specific humidity
and mass mixing ratio are related

rw =
q

1− q and q =
rw

1 + rw
(3.29)

The subroutine wcd2mr.F simplifies the computation even further. The mass mixing ratio is usually expressed
in units of grams per kilogram or ppm. Typical terrestrial surface mass mixing ratios range from 1 to 20
g/kg. Given the column density, ∆Cw(L), in molecules/cm2 and the pressure difference in the layer, ∆p(L),
in milli-bars then the mass mixing ratio in g/kg is given is Eqn. 3.30

rw(L) ≈ mww · g
Na

· ∆Cw(L)
∆p(L)

· 1000 g/kg
1000 dyne/cm2

/mB
= 2.93379 · 10−20 · ∆Cw(L)

∆p(L)
g/kg (3.30)

another popular unit is the water vapor density, ρw given in g/M3. This is given by the total density of the
moist atmosphere, ρd = mwd ·P (L)/(Na ·R∗ · T (L), in units of kg/M3, multiplied by the mass mixing ratio,
rw(L),

ρw(L) = rw(L) · ρd(L) =
(

mww · g
Na

∆Cw(L)
∆p(L)

)
·
(

106cm3/M3 ·mwd · P (L)
R∗ · T (L)

)
(3.31)

The mixing ratio relative to dry air is given by

Nw(L)
Nd(L)

=
∆Cw(L)
∆Cd(L)

=
mwd

mww
· rw(L) � rw(L)

ε
(3.32)
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3.4.5 Virtual Temperature

(see Wallace and Hobbs, 1977, pg. 51)
Moist air has a lower molecular weight then dry air (see Eqn. 3.71). In the lower few km’s of the

atmosphere, where the volumetric fraction of water vapor is on the order of 1-2% of the atmosphere in
mid-latitudes (see Table 1.8) and the tropics, the moist atmosphere has a molecular weight on the order of

< mw >= (1− f) · 28.964 + f · 18.016 (3.33)

Virtual temperature, Tv, is a construct that allows writing the ideal gas law with the dry gas constant, instead
of the moist gas constant. Starting from Eqn. 2.7 and Dalton’s law (sum of partial pressures, assuming

P = ρ · R∗
< mw >

· T (3.34)

= Pd + e (3.35)

= ρd · R∗
mwd

· T + ρw · R∗
mww

· T (3.36)

≡ ρ · R∗
mwd

· Tv (3.37)

where, e is the partial pressure of water, Pd is the partial pressure of dry air, R∗ is the universal gas constant
(equal to Boltzmann’s constant times Avogardro’s number, kb · Na), mwd is the molecular weight of dry
air (28.964 g/mole) mww is the molecular weight of water vapor (18.016 g/mole), ρw is the mass density of
water, ρd is the mass density of dry air and ρ is the density of moist air. Mass conservation requires that
ρ = ρd + ρw so that

P =
ρ · R∗

mwd
· T ·[

1− e
P ·
(
1− mww

mwd

)] (3.38)

Tv ≡ T[
1− e

P · (1− ε)
] where ε ≡ mww

mwd
� 0.622 (3.39)

The virtual temperature is the fictitious temperature that dry air must be to have the same density as
moist air. Moist air is less dense than dry air; therefore, the virtual temperature is higher than the actual
temperature.

The mass ratio of water, rw, can also be written as a function of the partial pressure of water

rw =
ρw

ρd
= ε · e

P − e (3.40)

which can be rewritten to obtain

e

P
=

rw
rw + ε

(3.41)

Tv =
T[

1− rw

rw+ε · (1− ε)
] (3.42)

= T ·
[

ε+ rw
ε (1 + rw)

]
(3.43)

= T ·
[
1 + rw/ε

1 + rw

]
(3.44)
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� T ·
[
1 + rw · 1− ε

ε

]
(3.45)

� T · [1 + 0.608 · rw] (3.46)

Note that this is equivalent to computing the ratio of the dry molecule weight to the total molecule weight.
Starting with Eqn. 3.15 we have

mwd

< mw >
=

1 + rw/ε

1 + rw
(3.47)

rw < mw > Tv − T
g/kg g/mole Tv/T T = 300)

0 28.964 1.0000 0.00
1 28.946 1.0006 0.18
5 28.877 1.0030 0.91
10 28.791 1.0060 1.80
15 28.706 1.0090 2.69
20 28.623 1.0119 3.57
25 28.541 1.0148 4.45

3.4.6 Volumetric Mixing Ratio to Dry Air

The volumetric mixing ratio of a gas x to DRY air is used in terrestrial remote sounding because it traces
the conserved quantity of gas in a highly variable moisture field. It is given by

fx(L) ≡ Nx(L)
Nd(L)

=
∆Cx(L)
∆Cd(L)

(3.48)

= ∆Cx(L) ·
[
∆P (L) ·Na

mwd · g
]−1

(3.49)

This is what is usually given for trace gases and the units of ppmv or ppbv.

3.4.7 Volumetric Mixing Ratio w.r.t. total atmosphere

The volumetric mixing ratio of a gas x to the total atmosphere is sometimes used in planetary astronomy
because there is little variability of the mix of species. It is given by

fx(L) ≡ Nx(L)
Nt(L)

=
∆Cx(L)
∆Ct(L)

(3.50)

=
∆Cx(L)

1
mwt

[mwd ·∆Cd(L) + mww ·∆Cw(L)]
(3.51)

= ∆Cx(L) ·
[
∆P (L) ·Na

mwt · g
]−1

(3.52)

using the approximation for ∆Cd(L) given in Eqn. 3.20, which is usually ≈ 2% high, the volumetric mixing
ratio can be approximated by the volumetric ratio to DRY air. This will usually low by ≤ 2%. It is given by

fx(L) =
mwt

mwd
· ∆Cx(L)
∆Cd(L)

� ∆Cx(L)
∆Cd(L)

(3.53)
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3.4.8 Layer Column Density in Amagats

The layer column density, given in molecules/cm2, can be given as a function of volumetric fraction

∆Cx(L) = Nx(L) ·∆z(L) = fx(L) ·Nt(L) ·∆z(L) = fx(L) ·
(

∆p(L) ·Na

g ·mwt

)
(3.54)

The column density, given in cm-amagat, of a layer defined by ∆p(L)

cm− amagat(L) =
∆Cx(L)
N0

= fx(L) ·
(

∆p(L) · Ts ·R∗
Ps · g ·mwt

)
(3.55)

and the total column density is given by

cm− amagat =
NL∑
L=1

cm− amagat(L) � fx(L) ·
(
Ts ·R∗
g ·mwt

)
=< fx > ·H0 =< fx > ·7.99545 · 105 (3.56)

3.4.9 Relative humidity

The water mass mixing ratio is also given in terms of the partial pressure of water, e, as

rw(L) ≡ ρw(L)
ρd(L)

=
mww

mwd
· e

p− e e = partial water vapor pressure (3.57)

The water saturation mixing ratio, rs, is given by

rs = ε · es

P − es
for es < P (3.58)

rs � ε for es ≥ P (3.59)

where es is the saturation vapor pressure discussed in Section 3.6.
So the saturated column density can be found by substitution Eqn. 3.58 into Eqn. 3.31 (i.e., rw = rs)

∆Cs(L) =
mwd

mww
· rs ·∆Cd(L) (3.60)

The relative humidity, U , is given as

U(L) =
rw(L)
rs(L)

=
∆Cw(L)
∆Cs(L)

(3.61)

to convert relative humidity back to mass mixing ratio (kg/kg) is given by

rw = ε · U · es

P − U · es
=

ε · U
P/es − U (3.62)

or column density with rw in g/kg and P in mb or rw in kg/kg and P in dynes/cm2

∆Cw(L) =
Na

mww · g∆P (L) · rw (3.63)

which can be expressed with relative humidity (∆P in mb, and P in same units as es)

∆Cw(L) =
Na

mww · g (1000 ·∆P (L)) · ε · U · es

P − U · es
(3.64)
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3.4.10 Dew Point Temperature

The Dew point is the temperature at which the partial pressure of water reaches the saturation value, that is

e =
ρwR∗T
mwwfw

= es(Tdp) (3.65)

The empirical expression for es can be used or a table lookup can be utilized after e is calculated.

3.5 Geopotential Height Calculation

Geopotential, Φ, is given by

dΦ = −g · dz (3.66)

Φ =

z∫
0

dΦ = −
z∫

0

g · dz � −g
z∫

0

dz for z ≤ 60km (3.67)

Retrievals are usually done on constant pressure surfaces. The pressure levels can be converted to height
with the hydrostatic equilibrium equation, Eqn. 2.8,

∂p = −ρ(p) · g · ∂z (3.68)

ideal gas law.

p = ρ(p) · T (p)
R∗

mw(p)
(3.69)

equating ρ(p) in these two equations yields

∂z = −R∗ · T (p)
g ·mw(p)

· ∂p
p

= −R∗ · T (p)
g ·mw(p)

· ∂ ln(p) (3.70)

The average molecular weight at each layer, L, can be written in terms of the dry molecular weight (all
species except water) and the wet molecular weight.

mw(L) =
mwd ·∆Cd(L) + mww ·∆Cw(L)

∆Cd(L) + ∆Cw(L)
= mwd ·

(
1 + rw(L)

1 + rw(L)/ε

)
(3.71)

and Eqn. 3.30 can be used to express the column densities with mass mixing ration, rw(L),

1
mw(L)

=
∆Cd(L) + ∆Cw(L)

mwd ·∆Cd(L) + mww ·∆Cw(L)
=

1
mwd

· 1 + rw(L)/ε
(1 + rw(L))

=
1

mwd
· ε+ rw(L)
ε(1 + rw(L))

(3.72)

In the AIRS height subroutine Eqn. 3.72 is rewritten as

1
mw(L)

=
1

mwd
· 1

1− rw(L)
rw(L)+ε · (1− ε)

(3.73)

∆z(L) = −R∗ · T (L)
mw(L) · g ·

∆p(L)
p(L)

(3.74)

= −Rd · T (L)
g

· ∆p(L)
p(L)

· 1

1− rw(L)
rw(L)+ε · (1− ε)

(3.75)
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If T is in Kelvin, RD ≡ R∗/mwd = 287.057 m2·s−2·K−1, and g = 9.80665 m·s−2 then the value of ∆z will be
given in meters. Eqn. 3.74 is the form used in height.F.

An alternate definition, using virtual temperature, Tv, as defined in Section 3.4.5, Eqn. 3.42, will result
in an equation that is identical to Eqn. 3.74, given by

∆z(L) =
Rd

g
· Tv · ∆p(L)

p(L)
� Rd · T (L)

g
· [1 + 0.608 · rw(L)] (3.76)

The height can vary significantly w.r.t. temperature. For example, in the layer between 900 and 1000
mb the height is approximately given by

∆z ≈ 287 · 100
9.8 · 950

· T (950) = 3.08 · T (950) (3.77)

T (950) ∆z (m)
287 884
260 800
240 740
220 677

3.6 Computation of Saturation Vapor Pressure

Given T in Kelvin these equations will give es in milli-Bar.
from Fleagle and Businger, Vol.5, pg. 62 (QC880.F59)
The first law can be written as

L = T · (S2 − S1) = U2 − U1 + Ps · (α2 − α1) (3.78)

where α1 ≡ 1/ρ1 and index 1 refers to the liquid phase and index 2 refers to the gas phase.
For an isothermal change of phase, the Clausius-Clapeyron equation has the form

dPs

dT
=

L

T · (α2 − α1)
(3.79)

Water vapor behaves like an ideal gas and α2 >> α1 for a change in state.
L ≈ 2.5 · 103 Joules/gm
L ≈ 2.824 · 103 Joules/gm over ice
Rw = R∗/mww = 8.3143/18.016 = 0.4615 Joules/gm/K
Ps = ρ2 ·RwT

dPs

dT
=

L

T · (α2 − α1)
� L · ρ2

T
=

L · Ps

Rw · T 2
(3.80)

d log(es) =
dPs

Ps
=

L

Rw
· dT
T 2

(3.81)

loge es =

T0∫
T=T

L

Rw
· dT
T 2

=
−L
Rw
|T0
T + C =

−L
Rw · T0

+
L

Rw · T + C (3.82)

at triple point all 3 phases can exist in equilibrium, 0.0098◦ C and Ps = 6.11 mb

es(T = T0) = 6.11 (3.83)

L/Rw = 5417.12



Chapter 3: Geophysical State Chris Barnet August 30, 2006 69

L/(Rw ∗ T0) = 19.8313
6.11 · exp (L/(Rw ∗ T0)) = 2.504 · 109

es(T ) = 6.11 · exp
(

5417
(

1
T0
− 1
T

))
= 2.504 · 109 · exp

(
5417
T

)
(3.84)

In Fig. 3.6 a number of models discussed in the following sections for the saturation vapor pressure are
compared.

Figure 3.7: Plot of saturation vapor equations given in Section 3.6

3.6.1 satprf.F (Liebe, 1981)

An approximation from H.J. Liebe 1981, Radio Science 16, p.1183-1199 for saturation vapor pressure of
water over liquid phase is used in the microwave retrieval (routine name satprf.F).

This is valid for T ≥ 100 K. The result is given in grams/cm2 within a layer bounded by temperature,
T (L), at levels, p(L)

TH(L) =
300

MAX(100, T (L))
(3.85)

Q(L) =
exp (22.64 ∗ (1.− TH(L)))
TH(L)5/MAX(.005, p(L))

(3.86)

WVSATCD(L) = 11.22 · (Q(L) +Q(L− 1)) · (p(L)− p(L− 1)) (3.87)
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3.6.2 svpwat.F (Flatau, Wlako, Cotton, 1982)

A routine from Flatau, Walko, and Cotton (1982) is used within the AIRS science team code. This routine
is also used by the NOAA regression code.

es =
8∑

i=0

ai · (T − 273.15)i (3.88)

The choice of coefficients is determined via an ICE flag. Water is valid over the range of -85≤ T−273.15 ≤
70 Celsius and the ice coefficients are valid over the range of -85 ≤ T − 273.15 ≤ 70 Celsius. The coefficients
are given in Table 3.5.

Table 3.5: Vapor pressure coefficients (Flatau, Walto, and Cotton (1982)
water ice

i -85 → +70 C -90 → 0 C
0 6.11583699 6.09868993
1 4.44606896·10−1 4.99320233·10−1

2 1.43177157·10−2 1.84672631·10−2

3 2.64224321·10−4 4.02737184·10−4

4 2.99291081·10−6 5.65392987·10−6

5 2.03154182·10−8 5.21693933·10−8

6 7.02620698·10−11 3.07839583·10−10

7 3.79534310·10−14 1.05785160·10−12

8 -3.21582393·10−16 1.61444444·10−15

3.6.3 watsat.F

Undocumented fit is used in the program watsat.F (over liquid)

es = 2.229 · 109 · exp (−5385/T ) (3.89)

3.6.4 Rodger’s and Yau

which is similar to the fit in R.R. Rogers and M.K. Yau (“A Short Course in Cloud Physics”, 3d edition,
Pergamon Press, 1989) used in the NOAA routine (L = 2.5 · 106J/kg, Rw = 461.5 J/kg/K)

es = 2.53 · 109 · exp (−L/(Rw · T )) (3.90)
Note this is the same equation as above, except that it assumes L =2485.2 Joules/gm and T0 = 273.15◦ K
From Rogers and Yau, pg. 16

es = 6.112 · exp
(
a · (T − 273.16)

T − b
)

(3.91)

coef Rogers & Yau
coef over water

a 17.67
b 29.66
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3.6.5 watsat.F

Another undocumented fit is given (but not used) in the program watsat.F

es = 0.001 · exp
(
a/T + b+ c log(T ) + d · T + e · T 2

)
(3.92)

coef over ice over water
a -5631.1206 -2313.0338
b -8.363602 -164.03307
c 8.2312 38.053682
d -3.861449 ·10−2 -1.3844344 ·10−1

e 2.77494 ·10−5 7.4465367 ·10−5

3.6.6 Murray

Murray, F.W. 1966. “On the computation of Saturation Vapor Pressure” J. Appl. Meteor. 6 p.204

es = 6.1078 · exp
(
a · (T − 273.16)

T − b
)

(3.93)

coef Murray Murray
coef over ice over water

a 21.8745584 17.2693882
b 7.66 35.86

3.6.7 Saucier

Saucier, W.J.1883. “Principles of Meteorological Analysis” Dover pg. 9 who uses values of Tetens (1930).
Note, he used 10(a′T/(T−b′) with T in Centigrade so to convert into the form above a = log 10 · a′ and
b = 273.16− b′.

coef over ice over water
a 21.875 17.27
b 7.66 35.86

3.6.8 Allen Huang’s routine

Another undocumented fit is given by Allen Huang and also used in the Univ. of Wisc routine svpwat.f. Here
the result is in mb

es =
6.1078mb

9∑
i=0

ai · (T − 273.16)i

(3.94)
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coef over water
a0 0.999996876·100

a1 -0.9082695004·10−2

a2 0.7873616869·10−4

a3 -0.6111795727·10−6

a4 0.4388418740·10−8

a5 -0.2988388486·10−10

a6 0.2187442495·10−12

a7 -0.1789232111·10−14

a8 0.1111201803·10−16

a9 -0.3099457145·10−19

3.7 Ozone volumetric mixing ratio

ρx =
mwx ·Nx(z)

Na
grams/cm2 (3.95)

∆Cx(L) ≡
z(L)∫

z(L+1)

Nx(z) · dz � Nx(L) ·∆z(L) =
Nx(L) ·∆P (L)

ρt · g molecules/cm2 (3.96)

The atmosphere consists of fixed gases (e.g., CO2, N2O, CO), water, and ozone so the pressure within any
level is given as

∆p(L) ≡
z(L)∫

z(L+1)

ρ · g · dz = g ·
z(L)∫

z(L+1)

(ρf + ρw + ρo) · dz (3.97)

so that

∆p(L) ·Na

g
= mwf ·∆Cf (L) + mww ·∆Cw(L) + mwo ·∆Co(L) (3.98)

∆Cf (L) =
∆p(L) ·Na

mwf · g − mww

mwf
·∆Cw(L)− mwo

mwf
·∆Co(L) (3.99)

we can also define the total column density as

∆Ct(L) ≡ ∆p(L) ·Na

mw(L) · g (3.100)

and if we require

∆Ct(L) = ∆Cf (L) + ∆Cw(L) + ∆Co(L) (3.101)

then,

mw(L) =
mwf ·∆Cf (L) + mww ·∆Cw(L) + mwo ·∆Co(L)

∆Ct(L)
(3.102)

∆Ct(L) in Eqn. 3.100 and mw can be solved for iteratively with Eqn. 3.102 starting with an initial guess of
mw = mwf

The mass mixing ratio of Ozone is usually given in g/kg (analogous to water) and for pressure given in mb
is written



Chapter 3: Geophysical State Chris Barnet August 30, 2006 73

ro(L) =
mwo ·∆Co(L)
mwd ·∆Cd(L)

=
g ·mwo ·∆Co(L)
Na ·∆P (L)

(3.103)

The volumetric mixing ratio, i.e., molecules of species x to the total number of molecules, is given by

fo(L) =
∆Co(L)
∆Ct(L)

=
∆Co(L)

∆P (L) ·Na
·mw(L) · g (3.104)

The column density in cm-amagat is defined as ratio of the number column density, ∆Co(L) in molecules/cm2,
divided by the number density at STP, which is Loschmidt’s number, N0 in molecules/cm3.

Zo(L) ≡ ∆Co(L)
N0

(3.105)

and Dobson units are defined as 10−3 cm-amagat

DU(L) ≡ 1000 · ∆Co(L)
N0

(3.106)

Figure 3.8: Snapshot of Gordon Miller Bourne Dobson (Feb. 25, 1889 to Mar. 11, 1976) who wrote
the seminal papers on Ozone in the 1930’s (http://www-atm.physics.ox.ac.uk/ user/barnett/ ozoneconfer-
ence/dobson.htm)

3.8 Recipe for conversion of mixing ratio to column density

Moisture on the Earth is a strong function of altitude due to the rapid decrease of temperature with altitude
and surface boundary effects (i.e., interaction with lakes and oceans in the convective part of the atmosphere).
The first panel of Fig. 3.9 shows moisture as it is represented in the model, ∆c(L), where the number of
molecules/cm2 of H2O per atmospheric layer is given. The atmospheric layers are shown by the dotted
horizontal lines. This function has a lot of vertical structure and would be difficult to interpolate reliably.



Chapter 3: Geophysical State Chris Barnet August 30, 2006 74

We can build a monotonic function by summing the layers down to a level as shown in the middle panel
of Fig 3.9. This is the number of molecules/cm2 from the top-of-atmosphere (TOA, L=1) to level L is given
by c(L) and is related to the layer column density by

c(L) =
L∑

i=1

∆c(i) (3.107)

In the case of moisture this is still a difficult, albeit monotonic, function to interpolate. Therefore, it
is best to perform the interpolation in loge(c(L)) space. This function is shown in the 3rd panel of Fig.
convmixratfig. A simple linear interpolation can be performed and then the inverse processes can be applied,
if desired.

Conversion to/from mixing ratio’s from/to column densities are usually done via this method to ensure

• the atmospheric structure can be accurately represented

• kinks and spurious “features” can be avoided.

Figure 3.9: Illustration of converting mixing ratio to level-to-space column density

3.9 Recipe for conversion of column density to mixing ratio

In our simulations (at present) the atmospheric state is specified with temperature at the levels, T (L), and
column densities of water vapor, liquid water, and ozone for the layer. The new variables names and constants
are

• ∆Cw(L) is the layer column density water vapor. That is the number of molecules with the layer
bounded by P (L− 1) and P (L)

• ∆Co(L) is the layer column density ozone.

• mwd = molecular weight of dry gases = 28.964 g/mole for 0.1 ≤ p ≤ Ps or 0 ≤ z ≤ 80 km.
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• mww = molecular weight of water vapor = 18.016 g/mole

• mwo = molecular weight of ozone = 47.998 g/mole

• Na = 6.022169·1023 molecules/mole

• k is boltzmann’s constant = R∗/Na

The thickness of the layer is a function of the average molecular weight, mw(L), which in turn is a function
of the quantity of water and, to a minor extent, ozone. To compute this we follow the steps below.

1. compute the total number density for the layer in molecules/cm3, ∆Nt(L) = 103 · p(L)/(k · T (L))

2. start with a reasonable initial guess, mw(L) = mwd

3. save current value for convergence test, mw′ = mw(L)

4. compute an estimate of the thickness of layer L in cm,

∆z(L) =
103 ·∆p(L)

g · ρt
=

103 ·∆p(L) ·Na

g ·mw(L) ·∆Nt
(3.108)

5. compute an estimate of the fixed gas column density for this layer,

∆Cd(L) = ∆z(L) ·∆Nt −∆Cw(L) (3.109)

6. compute new estimate of average molecular weight

mw(L) ≡ mwd ·∆Cd(L) + mww ·∆Cw(L)
∆Cd(L) + ∆Cw(L)

(3.110)

7. if |mw(L)−mw′| > mw′ · 10−7 then re-do steps # 3 through # 6.

8. convert the column densities, Cx, (molecules/cm2) to mass densities, ρx, (g/M3) where x is f for fixed
gases, w for water vapor, l for liquid water, and o for ozone. Assuming ∆z(L) is given in km the
equation is

ρx(p(L)) = 10 · mwx

Na
· ∆Cx(L)

∆z(L)
(3.111)

9. If mass mixing ratio is desired, qx, the mass mixing mixing ratio in g/kg is given by

qx(p(L)) ≡ ρx

ρd
=

mwx ·∆Cx(L)
mwd ·∆Cd(L)

(3.112)

3.10 Emissivity and Reflectivity

Emissivity is a complicated subject. A emissivity less than 1 implies that the surface is absorptive with a
power absorption coefficient, α, and that the radiation is emerging from within the surface. For example, at
1 MHz the penetration depth, δ, is 7.1 meter for fresh water and 0.25 meter for sea water. Therefore, it is
likely that the surface has thermal gradients and the skin temperature may be a function of frequency. In
Table 3.7 the emissivity is listed for a variety of common materials.

The surface emissivity is given by ε = (1− exp(−α · δ)) where the depth of penetration can be derived
from radio transmission line theory Jordan and Balman (1968, pg. 130). Assuming an optical depth ≈ unity
then ε � 1− exp(−1) = 0.632 and
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δ ≈ 1
α

=
1

2πf
√

µe
2

(√
1 + σ2

(2πf)2e2 − 1
) (3.113)

where σ is the conductivity (mho’s/M), e is the permittivity (farad/M) and µ is the permeability (henry/M).
See figure below for some examples of spectral surface types. The ocean, for example, has a microwave
emissivity of ≈ 0.55 at 50 GHz.

Figure 3.10: Infrared emissivity models for Earth surface types

In Fig. 3.11 the emissivity for different surface types is shown for microwave frequencies. The models
are from:

• The MIT algorithm uses a parametric model which computes emissivity given the surface skin temper-
ature (used as an ice/water flag), the percentage of land, and the emissivity at 50 GHz.

– The dry land model (Ts=288.1, 100% land, ε50 = 0.98) is shown as a dotted curve.

– The ocean model (Ts =288.1, 0% land, ε50 = 0.55) is shown as a dashed curve.

• The “wet land” model is from Wang and Schmugge (1980). The volumetric water content is Wc =40%
and the wilting point (see paper) is WP = 0.2.

• The “pure water” and “sea water” models are from Klein and Swift (1977).

• The remaining models (“snow” and “ice”) models are from Grody, 1988.

3.10.1 Emissivity and Reflectivity definitions

Most of the radiative transfer definition for surfaces comes from Hapke, B. 1981. The summary here comes
from Dozier and Warren (1982).

The probability for spectral emission of radiation in a given directions is equal to the probability of
absorption of radiation at that same frequency, ν, if it were incident along that same direction. This is a
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Figure 3.11: Microwave emissivity models for Earth surface types (see text for description)

consequence of time-reversal symmetry. Applied to thermal radiation this principle is known as Kirchoff’s
law. For an opaque or “semi-infinite” medium, radiation can only be reflected or absorbed, hence for any
incident or viewing direction angle, θ, directional emissivity, εs, (also called emittance) can be calculated
if the directional-hemispheric reflectance, ρs, (total hemispherical reflectance of direct irradiance) is known.
Assuming azimuthal symmetry the energy balance is given by

ε(ν, θ) = 1− ρ(ν, θ) (3.114)

Hemispherically averaged emissivity is derived by integrating directional emissivity over the hemisphere

ε(ν) = 2

0∫
π/2

ε(ν, θ) · cos(θ) · sin(θ) · dθ (3.115)

3.10.2 Ocean Emissivity: Masuda Model & English Model

Validation of remote sounding can be a bit easier over ocean because the large thermal inertia of the ocean
makes surface skin temperature a bit easier to predict. A large amount of work has been done, therefore, to
predict ocean emissivity as exactly as possible. In the infrared this is done via Masuda et al. (1988), Wu and
Smith (1997), Nalli et al. (2001).. In the microwave the “English” model is used Guillou et al. (1995).

3.10.3 Emissivity of Sand and Deserts

The strongest spectral feature in the infrared is the SiO2 restrahlung (a.k.a. restralen effect or restralen
band) feature in desert regions. An example of specular reflectance (i.e., r(ν) = 1 − ε(ν)) land is shown in
Fig. 3.16 and an example of the angular dependence of reflectance for a pine shrub & pure sand mixture is
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Figure 3.12: Jeff Dozier (UCSB, picture from http://www.bren.ucsb/people)

Table 3.6: Emissivity of Snow (Dozier and Warren, 1982)
angle ε(952) cm−1 ε(1200) cm−1

0◦ 0.9990 0.998
30◦ 0.9985 0.997
45◦ 0.9975 0.995

shown in Fig. 3.17. The desert feature is also discussed in Takashima and Masuda (1987), Wan and Dozier
(1989), and Salisbury and D’Aria (1992).

3.10.4 Emissivity of Snow

Snow is one of the darkest substances on Earth in the infrared. In Dozier and Warren (1982) the spectral
structure of snow is modeled and measured. Their Fig. 1 is reproduced in Fig. 3.18.
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Figure 3.13: Ocean Emissivity: Sensitivity of the Wu/Masuda Model to Wind and Angle

Figure 3.14: Ocean Emissivity: Sensitivity of the English Model to Angle
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Figure 3.15: Ocean Emissivity: Sensitively of the English Model to Wind

Figure 3.16: Specular reflectance, r(ν) = 1 − ε(ν) for example land surface types (Fig. 6, Snyder & Wan,
1998)
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Figure 3.17: Specular reflectance, r(ν) = 1 − ε(ν), for a scene with a mixture of pine shrubs and pure sand
as a function of viewing angle (Fig. 7b, Snyder & Wan, 1998)

Figure 3.18: (a) Calculated hemispherically averaged emissivity, εd(λ) = 2
∫ 0

π/2
εs(λ, θ) cos(θ) sin(θ)dθ of snow

for grain radii of 50 to 1000 µm. (b) Directional emissivity, εs(λ, θ), of snow for grain size of 200 µm for
viewing angles from 0◦ to 75◦ (Fig. 1, Dozier & Warren, 1982)



Chapter 3: Geophysical State Chris Barnet August 30, 2006 82

Table 3.7: Emissivity of Common Materials
material T ◦F (◦ C) emissivity
Adobe 68 (20) .90
Asbestos Board 100 (38) .96
Asbestos Cement 32-392 (0-200) .96
Asbestos Cement, Red 2500 (1371) .67
Asbestos Cloth 199 (93) .90
Asbestos Paper 100-700 (38-371) .93
Asbestos Slate 68 (20) .97
Asbestos Asphalt, pavement 100 (38) .93
Basalt 68 (20) .72
Brick: Red, rough 70 (21) .93
Brick: Fire Clay 2500 (1371) .75
Brick: Sandlime 2500-5000 (1371-2760) .59-.63
Carborundum 1850 (1010) .92
Ceramic: Alumina on Inconel 800-2000 (427-1093) .69-.45
Ceramic: Earthenware, Glazed 70 (21) .90
Ceramic: Earthenware, Matte 70 (21) .93
Ceramic: Porcelain 72 (22) .92
Ceramic: Clay 68 (20) .39
Ceramic: Tiles, Light Red 2500-5000 (1371-2760) .32-.34
Ceramic: Tiles, Red 2500-5000 (1371-2760) .40-.51
Concrete: Rough 32-2000 (0-1093) .94
Concrete: Tiles, Natural 2500-5000 (1371-2760) .63-.62
Concrete: Brown 2500-5000 (1371-2760) .87-.83
Concrete: Black 2500-5000 (1371-2760) .94-.91
Cotton Cloth 68 (20) .77
Dolomite Lime 69 (20) .41
Emory Corundum 176 (80) .86
Glass: Convex D 212 (100) .80
Glass: Convex D 600 (316) .80
Glass: Convex D 932 (500) .76
Glass: Nonex 212 (100) .82
Glass: Nonex 932 (500) .78
Glass: Smooth 32-200 (0-93) .92-.94
Granite 70 (21) .45
Gravel 100 (38) .28
Gypsum 68 (20) .80-.90
Ice: Smooth 32 (0) .97
Ice: Rough 32 (0) .98
Lacquer: Black 200 (93) .96
Lacquer: Blue, on Al Foil 100 (38) .78
Lacquer: Clear, on Al Foil (2 coats) 200 (93) .08 (.09)
Lacquer: Red, on Al Foil (2 coats) 100 (38) .61 (.74)
Lacquer: White 200 (93) .95
Lacquer: White, on Al Foil (2 coats) 100 (38) .69 (.88)
Lacquer: Yellow, on Al Foil (2 coats) 100 (38) .57 (.79)
Lime Mortar 100-500 (38-260) .90-.92
Limestone 100 (38) .95
Marble: White 100 (38) .95
Marbel: Smooth, White 100 (38) .56
Marble: Polished Gray 100 (38) .75
Mica 100 (38) .75
Oil on Nickel 0.005 Film 72 (22) .72
Oil on Nickel Thick Film 72 (22) .82
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material T ◦F (◦ C) emissivity
Paints: Black, CuO 75 (24) .96
Paints: Red, Fe2O3 75 (24) .91
Paints: White, Al2O3 75 (24) .94
Paints: Yellow, PbCrO4 75 (24) .93
Paints, Aluminium 100 (38) .27-.67
Paints, Bronze: Gum Varnish (2 coats) 70 (21) .53
Paints, Oil: All colors 200 (93) .92-.96
Quartz, Rough, Fused 70 (21) .93
Quartz Glass, 1.98 mm 540 (282) .90
Quartz Glass, 6.88 mm 540 (282) .93
Quartz Glass, 1.98 mm 1540 (838) .41
Quartz Glass, 6.88 mm 1540 (838) .47
Quartz Opaque 570 (299) .92
Quartz Opaque 1540 (838) .68
Red Lead 212 (100) .93
Rubber: Hard 74 (23) .94
Rubber: Soft, Gray 76 (24) .86
Sand 68 (20) .76
Sandstone 100 (38) .67
Sandstone, Red 100 (38) .60-.83
Sawdust 68 (20) .75
Shale 68 (20) .69
Silica: Glazed 1832 (1000) .85
Silica: Unglazed 2012 (1100) .75
Silicon Carbideb 300-1200 (149-169) .83-.96
Silk Cloth 68 (20) .78
Slate 100 (38) .67-.80
Snow: Fine Particles 20 (-7) .82
Snow: Granular 18 (-8) .89
Soil: Surface 100 (38) .38
Soil: Black Loam 68 (20) .66
Soil: Plowed Field 68 (20) .38
Soot: Acetylene 75 (24) .97
Soot: Camphor 75 (24) .94
Soot: Candle 250 (121) .95
Soot: Coal 68 (20) .95
Stonework 100 (38) .93
Water 100 (38) .67
Waterglass 68 (20) .96
Wood Low .80-.90
Beech, Planed 158 (70) .94
Oak, Planed 100 (38) .91
Spruce, Sanded 100 (38) .89
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Chapter 4

Examples of Absorption Coefficients

The climbing gets tougher, but the view gets better. Charlie Battista (via Jimmy Wojcik), circa 1975

Absorption in the visible and UV part of a planet’s spectrum is dominated by electronic transitions
with molecules. In contrast, the thermal infrared and microwave is dominated by molecular absorption and
emission. Molecular energy is stored in rotational, vibrational, and electronic modes.

The solar intensity can be approximated by a 5800 K Planck function. The planetary infrared radiation
environment is a combination of the black-body emission from the reflected solar (assume albedo = 0.34) and
a black-body at the effective temperature of the planet. Note that the reflected sunlight dominates the region
from 0.2 µm to 5 µm (2000 to 50,000 cm−1) while the radiation from the planet dominates the wavelength
range of 5 µm to 100 µm (100 to 2000 cm−1).

The real radiation from the planet is affected by absorption and emission of energy from molecules. In
the “solar” region the radiation transfer is dominated by strong molecular absorption by trace gases (methane
@ 1.7, 2.3, 3.3, 3.0, 3.3 µm, acetylene @ 3.0 µm, ethane @ 3.4 µm) and multiple scattering from hazes, cloud
decks (NH3 @ 0.5 Bar), aerosols (presumably hydrocarbons).

The concepts of absorption coefficients, κ, optical depth, φ, and transmittance, τ , are related by simple
equations. In other applications the symbols for these quantities may be interchanged, for example, τ is often
used for optical depth in many textbooks, including those referenced in these notes. For reasons that will
become important later, namely computation of channel averaged quantities, we will annotate our variables
with arrows for the direction of radiance we are considering (upwelling, ↑, or down-welling, ↓).

In optically thin regions the transmission is 100%, while at deep levels in the atmosphere the gas is so
opaque (optically thick) that the transmission is effectively zero.

The absorption coefficients are usually derived from laboratory measurements of transmittance through
layers of gas at fixed temperatures and pressures and the optical depth and absorption coefficients are derived
parameters. All the physics related to the interaction of radiation with matter (gases and particles) is
contained within the absorption coefficient and it is not a trivial calculation. For an arbitrary observation
angle, θ, the upwelling transmittance, τ↑ν (p), is related to the upwelling optical depth, φ↑ν(z), as follows

τν(z) ≡ exp
(
−φ

↑
ν

µ

)
= exp


−

TOA∫
z=0

κν

µ
· dz

 (4.1)

where µ = cos(θ). The optical depth, in turn, is related to the integration of the volumetric absorption
coefficient, given in units of inverse distance, over the thickness of the layer. In some texts the mass absorption
coefficient, usually given in units of cm2/gm, in which case an explicit factor of density, ρ(z) must be added
to the equations. For atmospheric sounding, thin layers (≈ 0.25 km) are used for this computation. All of the
physics are “hidden” in the absorption coefficients. Usually the absorption characteristics of the gas are also
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strong functions of pressure and temperature and may be a function of the partial pressure of other gases.
The quantity of gas within a planet’s atmosphere increases exponentially with depth (due to hydrodynamic
equilibrium, Eqn. 2.8) and may also be a function of depth due to chemical and photolysis processes.

In the troposphere the absorption coefficient κi, is dominated by pressure broadening due to collisions
with molecules of all species in the atmosphere. Each absorption line can be represented by a Lorentz
line-shape with a half-width, γ.

The half-width can be interpreted physically as the mean time, t, a molecule spends in the perturbed
state. The value of γij = 1

2π·t . From kinetic theory the lifetime of states is given by

αL � 0.07 · p
p0
·
√
T

T0
cm−1 (4.2)

where, p0 = 1000 mb and T0 = 273 K. For terrestrial tropospheric conditions this means that the typical line
width is 0.05 ≤ αL ≤ 0.11 cm−1.

The absorption coefficient at a given frequency requires summation over all lines, j = 1, J in a given
spectral interval. Note that the far wings of a large number of lines can contribute to κ even in window
regions.

κi(ν, p, T, θ) �
J∑

j=1

Ni · Sij

π

γij

(ν − νij)2 + (γij)2
· sec(θ) (4.3)

where the width of the line is given as a function of the width at the reference pressure and temperature,
γ0

i,j .

γij � γ0
ij ·

p

P0
·
√
T

T0
(4.4)

where the strength of the absorption for level j and gas i is given by Si,j times the number density of the
absorber, Ni.

For low pressures (p < 1 mb) the following considerations must be added to the discussion

• Thermal broadening due to Doppler shifting of lines is important at high temperatures and low pres-
sures. If T is the kinetic temperature then the probability of finding a molecule with a velocity, v, in
the range of (v, v + δv) is given by a Maxwellian distribution

W (v) · dv =
1√
π · v0 · exp

(−v2

v2
0

)
· dv (4.5)

where v0 =
√

2kT/m. If we observe at frequency µ the absorbing frequency is given by ν [1− (v/c)]
and the broadened absorption coefficient, κ′, is given by a convolution integral of the un-broadened
absorption coefficient, κ, Doppler shifted by the velocity distribution

κ′(ν) =

∞∫
−∞

κ(ν) (ν − vν/c)·)W (v) · dv (4.6)

Thus, Doppler broadening results in a Gaussian line-shape.

• Voigt line shapes (thermal Lorentz convolved with Doppler) must be used (see Mihalis, 1978 for a good
discussion)

H(a, b) =
a

π

∞∫
−∞

e−y2·dy

(b− y)2 + a2
(4.7)

with a = γ/∆νD, y = ∆ν/∆νD = v/v0, and b = (ν − ν0)/∆νD. The Doppler width, ∆ν D is defined
by ∆νD ≡ vν0/c
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• The Earth’s magnetic field causes line broadening (Zeeman splitting) and this must be corrected as
a function of latitude. Currently, this is done for AMSU channel # 14 in the rapid transmittance
algorithm and will be discussed later.

4.1 Infrared line parameters

A molecule has 3 ·N -6 degrees of freedom where N is the number of atoms. There are 3N possible motions,
3 of which are rotation of the entire rigid molecule about the principle axes, and 3 are translation along the
principle axes. Linear molecules (i.e., diatomic and linear molecules like CO2) have one additional mode of
oscillation so that the number of degrees of freedom is 3 · N − 5. Some of the degrees of freedom can be
degenerate (e.g. methane should have 9 degrees of freedom (3· 5 - 6) but it has two triple degenerate and
one double degenerate state due to symmetries within the molecule).

Vibrational-rotational spectra of molecules are very rich in the visible and IR regions of the spectrum.
The vibrational energy can be given by any combination of the fundamental vibrational modes νk, where
each vibrational level is specified by the vibrational quantum number ik

Evib =
∑

h · c · νk ·
(
ik +

1
2

)
(4.8)

and the vibrational quantum number ik can be zero or a positive integer value. The transition between
vibrational levels can become quite complex. For example, assume that a methane molecule makes a transition
from the ground state (i.e., ik = 0 for all k) to i′2 = 1, i′4 = 2. This overtone transition would be absorbed at
ν =

(
ν2 · (1 + 1

2 ) + ν4 · (2 + 1
2 )
)− 1

2ν2 − 1
2ν4 � 4145 cm−1.

As an example, the methane band at 3.3 µ m is a ν3 fundamental band (i.e., i3 = 0 and i′3 = 1). The
emission or absorption is due to transitions where ∆i3 = ±1 and all other vibrational modes are not excited.
This band has a high statistical weight, due to the triple degeneracy, and at Saturnian temperatures it is
highly populated.

In addition to the vibrational modes, the molecule can change its rotational energy. In the rigid rotor
model, it is assumed that the spacing of the rotational lines does not change energy with vibrational or
rotational levels (i.e., no centrifugal stretching of the molecule). If this approximation is made, the rotational
energy levels can be characterized by

Erot = hc ·B · j · (j + 1), for j = 0, 1, 2, . . . (4.9)

Laboratory observations show that the rigid model breaks down for high j lines and we can add a constant,
D, to represent the centrifugal distortion. D is on the order of 1:10000 of B. For low values of j the effect
of this term is negligible.

Erot = hc ·B · j · (j + 1)− hc ·D · j2(j + 1)2, for j = 0, 1, 2, . . . (4.10)

For example, for methane B � 5.25 cm−1 and for acetylene B � 1.18 cm−1 (Cess and Chen, 1975).
Transitions from the ground level (i3 = 0, j) to an excited level of the ν3 band (i′3 = 1, j′) must follow the
rotational selection rules, ∆j = j′− j = 0,+1,−1. In a rigid rotor model (low j values) the change in energy
for the fundamental ν3 line is equal to

∆Ev−r = ν3 + hc ·B · [2 · j ·∆j] (4.11)

The terminology used for the lines are shown in Fig. 4.1 and are described below

P-branch: ∆j = +1 which occur on the long wavelength side of the band

Q-branch: ∆j = 0 which is the center of the band and usually has many lines overlapping so that the
optical depth in the Q-branch is quite large.

R-branch: ∆j = −1 which occur on the short wavelength side of the band.
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Figure 4.1: Illustration of the P, Q, and R branches of a vibrational-rotational absorption feature

4.1.1 CO2: Carbon Dioxide

CO2 15 µm spectral region
CO2 has 3 · 3− 5 = 4 modes of vibration.

• ν1 (1388.23 symmetric stretch mode, inactive in the infrared due to having a zero dipole moment.)

• ν2 ( 667.381 bending mode) vib-rot band, has Q-branch at 667.5. This mode is doubly degenerate. The
level also changes with angular momentum. Therefore, we use l as the angular momentum quantum
number and write this transition as ıl2.

• ν3 (2349.16 asymmetric stretch mode), no Q-branch

• Fermi-resonance stimulated by ν2 (618.029, 720.805)

• Fermi-resonance stimulated by 2 · ν2(1334) � ν1 (1330) occurs in Raman spectra at 1286, 1388 cm−1

(mean of 1330 cm−1). In a Fermi resonance these bands interfere such that higher frequency is raised
and the lower frequency is lowered and the two bands have about the same intensity even though we
would expect the ν1 transition to be more populated than the 2ν2 transition.

• CO2 “laser lines” between 900-1100 arise from stimulated transitions of excited ν3 (2350 cm−1) to ν1
(1390 cm−1. Since ∆J = ±1 there are about 80-100 transitions in the 900-1100 cm−1 region. The
spacing is about 2 cm−1. The first vibrational level of N2 is at 2360 cm−1 and can excite CO2 ν3.
(Banwell, 1983, pg. 120)

B000(CO2) = 0.39016 cm−1

B010 - B000 = 0.00041 cm−1, that is the difference in rotational constant for the fundamental mode
ν1, ν2, ν3 specified by (i1 = 0, i2 = 1, i3 = 0) and the ground state.

line wings have 1.25 scale height wide weighting functions
line centers have 2.5 scale height weighting functions

12C16O18O = 0.00408 12C16O16O [Kiehl + Ramanathan, 1983]
12C16O17O = 0.00074 12C16O16O
13C16O16O = 0.0112 12C16O16O
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Figure 4.2: Illustration of CO2 energy levels (from Andrews et al., 1987, p. 43

Table 4.1: CO2 band parameters (Cess+Ramanathan, 1972)
S at 180 K A0 γ0 d

band cm−2 am−1 cm−1 atm−1 cm−1 cm−1

667 549 17.3 0.097(300/T )2/3 1.56
2350 4505 15.4 0.097(300/T )2/3 ??
3715 102 32.2 0.097(300/T )2/3 ??

CO2 has overtone bands at 12.6, 10.4, 9.4, 2.06, 2.01 µm.
for 12C16O17O and 12C16O18O the mean line spacing is 0.78 for all bands

γ0 = 0.067
(

300
T

)2/3

atm−1cm−1 (4.12)

A0 = 22.18
(
T

296

)1/2

cm−1 (4.13)

S(T ) � S(T0) ·
(
T0

T

)
(1− exp(−1.439ν/T ))3

(1− exp(−1.439ν/T0))3
(4.14)

The 791.5 Q-branch (1110I ← 1000II has significant O3 interference at the line center (Kumer and
Mergenthaler 1991. Appl. Optics 30 p. 1124).

The high J lines in the R branch of the 4.3 um band (001 band) of CO2 are used for atmospheric sounding
because

• this region is void of other lines

• the non-linearity of the Planck function enhances sensitivity (see Section 1.5.4 and Fig. 1.12).

• high T dependence of high J lines makes narrower weighting functions free of isotopes and hot lines
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Table 4.2: CO2 15 µm band parameters, (Kiehl+Ramanathan, 1983)
band transition S at 300 K Ej d
cm−1 ν1,νl

2,ν3 cm−2·atm−1 cm−1 cm−1

667.381 0000 → 0110 194 0.0 1.56
667.751 0110 → 0220 15 667.381 0.78

720.805 (I) 0110 → 1000 5 667.381 1.56
618.029 (II) 0110 → 1000 4 667.381 1.56

668.107 0220 → 0330 0.85 1335.131 0.78
647.063 (II) 1000 → 1110 0.7 1285.410 1.56
668.670 (I) 1000 → 1110 0.3 1388.185 1.56

Table 4.3: CO2 band parameters (Andrews, Holton, Leovy, 1987, pg. 43)
band band lower
center intensity state

isotope of CO2 transition cm−1 S (cm/molecule) energy
12C16O16 0000 → 0110 667.38 8.26·10−18 0.0

0110 → 0220 667.75 6.48·10−19 667.38
0110 → 1000 720.81 1.85·10−19 667.38
0200 → 1110 791.45 1.12·10−21 1285.41
0220 → 0330 668.12 3.82·10−20 1335.13
0220 → 1110 741.73 7.90·10−21 1335.13
1000 → 1110 688.67 1.49·10−20 1388.19
0330 → 0440 668.47 2.00·10−21 2003.24

12C18O16 0000 → 0110 662.37 3.3·10−20 0.0
13C16O16 0000 → 0110 648.48 8.60·10−20 0.0

• The derivative of the Planck function w.r.t. is 3.5%, thus in the lower troposphere these channels are
more sensitive to temperature, therefore, they are weighted more strongly to warm components of a
mixed scene. In cloudy regions these channels are weighted toward warmer (i.e., surface) regions.
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Table 4.4: High J lines of CO2 at 4.4 µm (Roth, 1977)
ν0 J b S E′′

2386.532 64 0.058 0.02266 1620.997
2387.262 66 0.058 0.01423 1722.934
2387.966 68 0.057 0.008803 1827.964
2388.644 70 0.057 0.005356 1936.086
2389.297 72 0.056 0.003223 2047.298
2389.925 74 0.055 0.001892 2161.598
2390.104 76 0.055 0.001098 2278.984
2391.656 78 0.054 0.0006273 2399.454
2391.181 80 0.054 0.0003546 2523.007
2391.656 82 0.053 0.0001956 2649.640
2392.682 84 0.052 0.0001066 2779.351
2393.156 86 0.052 0.00005728 2912.138
2393.606 88 0.051 0.00003024 3047.998
2394.029 90 0.051 0.00001577 3186.931

J = rotational line index
b = air broadened width, cm−1 atm−1

S = line strength at 296 K, S ∝ [1/T 2] exp(−E′′/kT )
E′′ = ground state energy, cm−1
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Figure 4.3: Example of AIRS Spectrum in the 15 micron carbon dioxide band. In the top panel the ν2
fundamental is shown and in the bottom panel the hot bands are shown with higher spectral resolution.
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Figure 4.4: CO2, Water and Ozone lines near 15 microns (HITRAN 2000 database)

Figure 4.5: CO2, Water and Ozone lines near 4.3 microns (HITRAN 2000 database)



Chapter 4: Absorption Coefficients Chris Barnet August 30, 2006 94

4.1.2 H2O: Water

Water is a non-linear molecule with angle of 104.45◦ ν1 ≈ ν3 ≈ 2 · ν2. It has 3 · 3− 6 = 3 fundamental modes
of oscillation. The first mode has the two hydrogen atoms moving to/from the oxygen atom together along
the bond lines (symmetric stretch). The second mode has the hydrogen atoms moving outward (bending).
The third mode is an asymmetric stretching. All three modes induce a dipole moment.

Table 4.5: Water fundamental modes
band H2O HDO
ν1 3657.05 2723.68 symmetric stretch
ν2 1594.75 1403.49 symmetric bending
ν3 3755.93 3707.47 antisymmetric stretch

For the infrared spectrum the fundamental ν2 band at 6.3 µm (7.12 µm for HDO) is most important;
however, water has overtone bands at 24, 2.5→3.0, 3.2, 1.85, 1.45, 1.38, 1.13, and 0.94 µm.

Figure 4.6: Water, Methane, and O3 lines near 6.6 microns (1200 to 1800 cm−1, HITRAN 2000 database)

4.1.3 O3: Ozone

Ozone has a bond angle of 116.82◦ and a separation of 1.278 Åbetween the center atom and the two O atoms
on each side. All 3 · 3− 6 = 3 fundamental modes are active in the infrared. It is an asymmetric rotator (all
3 principal moments of inertia are different).

E =
1
2
Ia · ω2

a +
1
2
Ib · ω2

b +
1
2
Ic · ω2

c (4.15)

and by convention Ia ≤ Ib ≤ Ic. The total angular momentum is given by

L2 = L2
a + L2

b + L2
c =

h2

4π2
J(J + 1) (4.16)

and the angular momentum along a symmetry axis has the values of
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Figure 4.7: Water, Methane, and O3 lines near 3.5 microns (2200 to 2800 cm−1HITRAN 2000 database)

Lα =
h

2π
K (4.17)

the quantum numbers J and K have the values of 0, 1, 2, . . . and |K| ≤ J .
The ν3 band (9.6 µm) spectral region is most important for sounding of ozone; however, the ν2 band

is an important interference absorber for temperature sounding in the 15µm region. There is an important
overtone band at 4.75 µm.

ν1 1110 cm−1

ν2 701 cm−1

ν3 1045 cm−1
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Table 4.6: Location of strength (cm−1/molecule/cm−2) for selected lines in the P, Q, and R branches of the
9.6 µm ν3 ozone band Smith et al., 2001

ν S J ′ K ′
a K ′

c J ′′ K ′′
a K ′′

c

1022.285 3.64·10−20 20 1 20 21 1 21
1023.342 3.78·10−20 19 0 19 20 0 20
1024.406 3.88·10−20 18 1 18 19 1 19
1024.922 3.61·10−20 17 2 15 18 2 16
1025.073 3.78·10−20 17 1 16 18 1 17
1025.426 3.98·10−20 17 0 17 18 0 18
1026.120 3.71·10−20 16 2 15 17 2 16
1026.476 4.01·10−20 16 1 16 17 1 17
1026.979 3.70·10−20 15 2 13 16 2 14
1027.103 3.89·10−20 15 1 14 16 1 15
1027.456 4.07·10−20 15 0 15 16 0 16
1028.140 3.73·10−20 14 2 13 15 2 14
1028.495 4.03·10−20 14 1 14 15 1 15
1029.002 3.67·10−20 13 2 11 14 2 12
1029.095 3.87·10−20 13 1 12 14 1 13
1029.433 4.03·10−20 13 0 13 14 0 14
1030.115 3.62·10−20 12 2 11 13 2 12
1030.463 3.92·10−20 12 1 12 13 1 13
1031.051 3.71·10−20 11 1 10 12 1 11
1031.360 3.85·10−20 11 0 11 12 0 12
1032.381 3.65·10−20 10 1 10 11 1 11
1041.0063 1.31·10−20 7 4 3 7 4 4
1041.0860 1.56·10−20 6 4 3 6 4 2
1041.2117 2.38·10−20 4 4 1 4 4 0
1041.2478 6.99·10−21 8 3 6 8 3 5
1050.385 3.81·10−20 11 0 11 10 0 10
1050.740 3.89·10−20 12 1 12 11 1 11
1050.863 3.73·10−20 11 1 10 10 1 9
1051.047 3.64·10−20 12 2 11 11 2 10
1051.657 4.08·10−20 13 0 13 12 0 12
1051.985 4.10·10−20 14 1 14 13 1 13
1052.043 3.77·10−20 13 2 11 12 2 10
1052.308 4.01·10−20 13 1 12 12 1 11
1052.392 3.85·10−20 14 2 13 13 2 12
1052.848 4.20·10−20 15 0 15 14 0 14
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Table 4.7: Location of strength (cm−1/molecule/cm−2) for selected lines in the R branch of the 9.0 µm ν1
ozone band Smith et al., 2001 (continued)

ν S J ′ K ′
a K ′

c J ′′ K ′′
a K ′′

c

1053.168 4.16·10−20 16 1 16 15 1 15
1053.520 3.91·10−20 15 2 13 14 2 12
1053.680 3.92·10−20 16 2 15 15 2 14
1053.692 4.12·10−20 15 1 14 14 1 13
1053.966 4.18·10−20 17 0 17 16 0 16
1054.289 4.09·10−20 18 1 18 17 1 17
1054.911 3.85·10−20 18 2 17 17 2 16
1054.968 3.91·10−20 17 2 15 16 2 14
1055.006 4.10·10−20 17 1 16 16 1 15
1055.016 4.04·10−20 19 0 19 18 0 18
1055.350 3.91·10−20 20 1 20 19 1 19
1056.007 3.80·10−20 21 0 21 20 0 20
1056.081 3.67·10−20 20 2 19 19 2 18
1056.244 3.94·10−20 19 1 18 18 1 17
1056.351 3.63·10−20 22 1 22 21 1 21
1056.376 3.78·10−20 19 2 17 18 2 16
1057.397 3.69·10−20 21 1 20 20 1 19
1117.0834 1.65·10−21 18 0 18 17 1 17
1120.7628 2.02·10−21 22 0 22 21 1 21
1122.4009 2.06·10−21 23 1 23 22 0 22
1122.5439 2.10·10−21 24 0 24 23 1 23
1123.9457 2.11·10−21 25 1 25 24 0 24
1124.2947 2.11·10−21 26 0 26 25 1 25
1125.5243 2.08·10−21 27 1 27 26 0 26
1126.0218 2.05·10−21 28 0 28 27 1 27
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Figure 4.8: Ozone and Water lines near 10 microns (HITRAN 2000 database)
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4.1.4 CH4: Methane

Methane has 3 · 5− 6 = 9 modes of oscillation; however, ν3 and ν4 are triply degenerate.

Table 4.8: Methane Bands (Appleby, 1980)
band µm cm−1 type degeneracy
ν1 3.43 2915.6 stretching 1
ν2 6.53 1533.5 bending 2
ν3 3.31 3019.5 stretching 3
ν4 7.06 1306.2 bending 3

Table 4.9: The Strongest Bands of Methane (f/ Andrews et al., 1997)
band 12CH4

13CH4

ν4 1310.76 1302.77
ν2 1533.37
ν3 3018.92 3009.53
2ν4 2612

ν2 + ν4 2830 2822
2ν2 + ν4 3062
ν1 + ν4 4223
ν3 + ν4 4340
ν2 + ν3 4540

13C is 1.108% of all Carbon
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Figure 4.9: Example AIRS spectrum in the 7.7 micron methane band

Figure 4.10: Methane and Water lines near 7.7 microns (HITRAN 2000 database)
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Figure 4.11: Methane and Water lines near 3.3 microns (HITRAN 2000 database)

Figure 4.12: Methane and Water lines near 2.2 microns (HITRAN 2000 database)
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4.1.5 CO: Carbon Monoxide

The range of CO on the Earth is 50 - 200 ppbv

Table 4.10: B for isotopes of CO from Microwave rotation states from Banwell, 1973, pg. 86
B ν0

isotope cm−1 cm−1

12C16O 1.92118 3.84225
13C16O 1.83669 3.67337

13C16O has an abundance equal to 0.0112 of 12C16O
12C18O has an abundance equal to 0.00408 of 12C16O

1. fundamental vib-rot band at 4.7 µm or 2140 ± 26 cm−1

2. 1st overtone @ 4260 cm−1

The value of B for an excited vibrational transition is different than the microwave rotational value. The
value of B will depend on the vibrational quantum number, ik.

Bν = Be − α(ik +
1
2
) (4.18)

with Be=1.924 and α=0.018.

Table 4.11: CO low J lines, from Banwell, 1973, pg. 86
P(J”) ν R(J”) ν
P(1) 2139.43 R(0) 2147.08
P(2) 2135.55 R(1) 2150.86
P(3) 2131.63 R(2) 2154.59
P(4) 2127.68 R(3) 2158.31
P(5) 2123.70 R(4) 2161.97
P(10) 2103.27 R(9) 2179.77
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Figure 4.13: Carbon Monoxide and Water lines near 2.4 microns (HITRAN 2000 database)

Figure 4.14: Example AIRS spectrum in the 4.7 micron carbon monoxide band (HITRAN 2000 database)
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Figure 4.15: Example AIRS spectrum in the 4.7 micron carbon monoxide band over a fire. (HITRAN 2000
database)
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4.2 Microwave Absorption Coefficients

Figure 4.16: Microwave opacity sources in the Earth’s atmosphere for P=5 and 100 mb, respectively
.

Microwave absorption coefficient for oxygen, water vapor, liquid water, and nitrogen for 4 regions of the
atmosphere are shown in Fig. 4.16 and Fig. 4.17. The US standard atmosphere does not specify liquid water
due to the large spatial and temporal variability; however the lower two panels have an amount of liquid
water to illustrate the absorption coefficient. The conditions in the four panels are given in the table below

Table 4.12: Atmospheric conditions for the 4 pressure regimes in Fig. 4.16 and Fig. 4.17
T P ρwater ρliq ρozone

K mb g/M3 g/M3 g/M3

A 240 5 10−5 10−11 9.7· 10−5

B 220 100 3· 10−5 10−11 2.47· 10−5

C 255 500 0.7 0.07 4.5· 10−5

D 287 1000 6 0.6 7.0· 10−5

4.2.1 Oxygen absorption coefficient, κO2
n

The equations and discussions given in this section were taken primarily from Rosenkranz (1993) and Liebe
et al. (1992).

The absorption coefficient for molecular oxygen, 16O2, arises from complicated magnetic-dipole transi-
tions in which the two unpaired electron spins of the 3

∑
g electronic ground state change alignment with

respect to the rotational angular momentum, which is given the quantum number N . The two electron spins
can be oriented as follows

↑ ↑ ↑ ↓ ↓ ↓
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Figure 4.17: Microwave opacity sources in the Earth’s atmosphere for P=500 and 1000 mb, respectively
.

The allowed transitions are from J = N to states where J = N ± 1, where J is the resultant angular
momentum quantum number. The states are denoted by N± and some of the lines are shown in the table
below.

The absorption coefficients are complicated functions of frequency (f in GHz), pressure (p in mb),
temperature (T in K), and amount of O2 derived from water vapor density (ρw in g/M3 and is given by
Rosenkranz 1993 (Eqn. 2A.1, pg. 80); however, they can be written in terms of the line parameters shown
in the table below.

κO2
ν (f, p, T, ρw) = 10−10 · n ·


αNR

ν +
∑

j

Sj(T ) · F (f, f0(j))


 (4.19)

In Fig. 4.19 the microwave absorption coefficient for oxygen near 60 GHz, kO2(f, p, T, ρw), is shown as
a function of frequency for an atmospheric layer at T = 290 K, p = 10 mb, and ρw = 0.001 g/M3. The
AMSU channel response functions in this region (channels 3-14) are identified. Many have multiple band
passes which are defined in Section 25.2 and shown as connected boxes in Fig. 4.19. The 3 lines in Fig.
4.19 represent different levels within the atmosphere; p =300 mb, p =100 mb, and p =5 mb respectively.
In Fig. 4.20 we show the same figure, but focusing in on the AMSU region. Also shown are the four MSU
instrument channel’s. MSU is an instrument that has flown for 20 years aboard the NOAA TOVS polar
sounding platforms. In Fig. 4.21 the single O2 line at 118 GHz is shown along with phase-A plans for ATMS,
which is planned for launch on the NPOESS/NPP platform in 2006, to measure this line. This option was
not funded. Note that the 118 GHz O2 line sits on top of a 118 GHz ozone line (see Fig. 4.17). The funded
ATMS O2 channels are very similar to the AMSU channels shown in Fig. 4.20.

The allowed transitions are from J = N to states where J = N±1, where J is the vector total (rotation +
e− spin) angular momentum quantum number and N is rotational quantum number. The states are denoted
by N± and the frequency of the transition, f0(j) are shown as dotted lines and the line parameters are shown
below and discussed in section 4.2.1.
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Figure 4.18: Snapshot of Phil Rosenkranz in 2001

Note that the factor of 10−10 arises from converting S from cm2· Hz to M2· GHz (10−4 · 10−4) and
converting absorption from M−1 to kM−1 (103). The number density of O2, nO2 (given in molecules/M3) for
pdry (given in milli-bar (mb)) is given by

nO2 =
q16O2

300 · k · (103 · pdry) · θ = 0.503384 · 1022 · pdry · θ (4.20)

• θ ≡ 300/T

• q16O2 = 0.2085 (16O2/O2 = 98.65%)

• pH2O(in mb) = ρw · T ·R∗/mww = ρw · T/217

1
217

=
8.3156 · 107 erg/mole/K

18.016 g/mole
·
(

10−6 M3

cm3

)(
10−3 mb

dyne/cm2

)
(4.21)

• pdry(in mb) = p− pH2O

The non-resonant absorption arises from the relaxation spectrum of oxygen’s magnetic dipole moment (see
Liebe et al. 1992, pg. 635, Eqn. 2 and Eqn. 12 with p in mb, not kPa). The non-resonant term is related to
the imaginary component of the refractivity, N ′′ = �(N), and is given by

κO2−NR
ν = 0.1820 · f ·N ′′ dB/km (4.22)

= 0.04191 · f ·N ′′ nepers/km (4.23)

= 2.57327 · 10−6 · p · θ2 · f2 · γNR

(f2 + γ2
NR))

nepers/km (4.24)

The conversion from decibels (dB) to nepers is a factor of loge(k)/ log10(k) = 0.230259 and complex refrac-
tivity, N , is related to the index of refraction, n, by N = (n − 1) · 106 ppm. The line half-width parameter
for non-resonant absorption, wNR, has a value of 0.56 GHz/bar (Liebe, 1992) and with pressure given in mb
the pressure broadened half-width, γ is given by

γNR(j) = (wNR/1000) · (pdry · θ0.8 + 1.1 · pH2O · θ
)

(4.25)

which has been utilized in the rapid transmittance algorithm (see Section 5.11.1) as follows
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Figure 4.19: The oxygen absorption coefficient at 57 GHz (see text for description)

αν = κO2−NR
ν · π

10−10 · n = 1.606 · 10−17 · f
θ
· f · γNR

·(f2 + γ2
NR))

(4.26)

For lines the pressure broadened line shape is valid for pressures ≥ 1 mb and is given by (Rosenkranz 1993,
Eqn. 2.56, pg. 65))

F (f, f0(j)) =
1
π
·
(

f

f0(j)

)2 [
γc + (f − f0(j)) · Y (j)

(f − f0(j))2 + γ2
c

+
γc − (f + f0(j)) · Y (j)

(f + f0(j))2 + γ2
c

]
(4.27)

where the overlap correction (from Rosenkranz 1993, Eqn 2A.6, pg. 81) is given by

Y (j) =
p

1000
· θ0.8 · [y(j) + (θ − 1) · v(j)] (4.28)

and y(j) and v(j) are from (Rosenkranz 1993, pg. 81, Eqn 2A.4) and given in Table 4.13.

γc(j) =
w(j)
1000

· (pdry · θ0.8 + 1.1 · pH2O · θ
)

(4.29)

and the line strength is given by

Sj(T ) = S′(j) ·Qelec ·Qvib ·Qrot · exp(b(j) · (1− θ)) (4.30)

• f0(j), w(j), S′(j) comes from the table below.

• b(j) = (Ef + Ei)/(2 · k · T0) comes from the table below.

• Qelec � 1

• Qvib =
∏
v

(
1− e(−2π·Tv/T )

) � 1 where Tv ≥ 2240 K for O2,H2O and Tv ≥ 1000 for O3 (pg. 84,85,87)

• Qrot = θ2 (Eqn. 2.20, pg. 47)
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Figure 4.20: The oxygen absorption coefficient at 57 GHz (see text for description)

The line the overlap correction is given by

Y (j) =
p

1000
· θz · y(j) (4.31)

In Table 4.13, the line parameters for 35± through 41± are taken from Liebe (1977). All other lines are from
Liebe (1992). Our value of w(j) has a fudge factor of 0.925 applied to make Liebe’s 33- line match the value
of w(j) in our table. All other parameters were converted to our units directly from the values in Liebe’s
Table 1 on pg. 328.
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Figure 4.21: The oxygen absorption coefficient at 118 GHz (see text for description)
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Table 4.13: Oxygen microwave line parameters
f0(j) S′(j) w(j) y(j) v(j)

N± (GHz) cm2·Hz b (GHz/bar) (bar−1) (bar−1)
1- 118.7503 2.9360e-15 0.009 1.630 -0.0233 0.0079

1+ 56.2648 8.0790e-16 0.015 1.646 0.2408 -0.0978
3- 62.4863 2.4800e-15 0.083 1.468 -0.3486 0.0844

3+ 58.4466 2.2280e-15 0.084 1.449 0.5227 -0.1273
5- 60.3061 3.3510e-15 0.212 1.382 -0.5430 0.0699

5+ 59.5910 3.2920e-15 0.212 1.360 0.5877 -0.0776
7- 59.1642 3.7210e-15 0.391 1.319 -0.3970 0.2309

7+ 60.4348 3.8910e-15 0.391 1.297 0.3237 -0.2825
9- 58.3239 3.6400e-15 0.626 1.266 -0.1348 0.0436

9+ 61.1506 4.0050e-15 0.626 1.248 0.0311 -0.0584
11- 57.6125 3.2270e-15 0.915 1.221 0.0725 0.6056

11+ 61.8002 3.7150e-15 0.915 1.207 -0.1663 -0.6619
13- 56.9682 2.6270e-15 1.260 1.181 0.2832 0.6451

13+ 62.4112 3.1560e-15 1.260 1.171 -0.3629 -0.6759
15- 56.3634 1.9820e-15 1.660 1.144 0.3970 0.6547

15+ 62.9980 2.4770e-15 1.665 1.139 -0.4599 -0.6675
17- 55.7838 1.3910e-15 2.119 1.110 0.4695 0.6135

17+ 63.5685 1.8080e-15 2.115 1.108 -0.5199 -0.6139
19- 55.2214 9.1240e-16 2.624 1.079 0.5187 0.2952

19+ 64.1278 1.2300e-15 2.625 1.078 -0.5597 -0.2895
21- 54.6712 5.6030e-16 3.194 1.050 0.5903 0.2654

21+ 64.6789 7.8420e-16 3.194 1.050 -0.6246 -0.2590
23- 54.1300 3.2280e-16 3.814 1.020 0.6656 0.3750

23+ 65.2241 4.6890e-16 3.814 1.020 -0.6942 -0.3680
25- 53.5957 1.7480e-16 4.484 1.000 0.7086 0.5085

25+ 65.7648 2.6320e-16 4.484 1.000 -0.7325 -0.5002
27+ 53.0669 8.8980e-17 5.224 0.970 0.7348 0.6206
27+ 66.3021 1.3890e-16 5.224 0.970 -0.7546 -0.6091
29- 52.5424 4.2640e-17 6.004 0.940 0.7702 0.6526

29+ 66.8368 6.8990e-17 6.004 0.940 -0.7864 -0.6393
31- 52.0214 1.9240e-17 6.844 0.920 0.8083 0.6640

31+ 67.3696 3.2290e-17 6.844 0.920 -0.8210 -0.6475
33- 51.5034 8.1910e-18 7.744 0.890 0.8439 0.6729

33+ 67.9009 1.4230e-17 7.744 0.890 -0.8529 -0.6545
368.4984 6.4600e-16 0.048 1.920 0.0000 0.0000
424.7631 7.0470e-15 0.044 1.920 0.0000 0.0000
487.2494 3.0110e-15 0.049 1.920 0.0000 0.0000
715.3932 1.8260e-15 0.145 1.810 0.0000 0.0000
773.8397 1.1520e-14 0.141 1.810 0.0000 0.0000
834.1453 3.9710e-15 0.145 1.810 0.0000 0.0000

35- 50.9873 3.2540e-18 8.688 0.877 0.7801 1.3800
35+ 68.4308 5.8780e-18 8.688 0.877 -0.7876 1.3600
37- 50.4736 1.2390e-18 9.694 0.857 0.0000 0.0000

37+ 68.9601 2.3130e-18 9.694 0.857 0.0000 0.0000
39- 49.9818 4.4960e-19 10.756 0.844 0.0000 0.0000

39+ 69.4887 8.5270e-19 10.756 0.844 0.0000 0.0000
41- 49.4514 1.4160e-19 11.873 0.825 0.0000 0.0000

41+ 70.0169 2.8640e-19 11.873 0.825 0.0000 0.0000
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4.2.2 Water vapor absorption coefficient, κH2O−vap
n

The absorption coefficient for water vapor is a function of frequency (f in GHz), pressure (p in mb), tem-
perature (T in K), and amount of H2

16O derived from water vapor density (ρw in g/M3 and is given by
(Rosenkranz 1993, Eqn. 2A.1, pg. 80)

κHO−vap
ν (f, p, T, ρw) = kcon

ν +


10−4 ·Nw ·

∑
j≥0

Sj(T ) · F (f, f0(j))


 (4.32)

The constant 10−4 is a conversion from 10−9 GHz/Hz and 10+5 cm/km. The water number density, Nw, is
given in units of molecules/cm3 by

Nw =
(

10−2 M
cm

)3

·
(

Na

mww

)
· ρw =

6.0221367 · 1017

18.016
· ρw = 3.343 · 1016 · ρw (4.33)

The continuum absorption coefficient, kcon
ν is given by (Rosenkranz 1993, Eqn. 2.64, pg, 70) with the

two constants Cf = 4.74 ·10−9 and Cs = 1.50 ·10−7 in units of cm−1·bar−2·GHz−2. The factor of 10−1 in the
equation arises from a conversion of these coefficients by 10−6 (bar/mb)2 and 10+5 cm/km and θ ≡ 300/T .

kcon
ν = 10−1 · (Cf · pdry · θ3 + Cs · pH2O · θ10.5

) · pH2O · f2 (4.34)

The strength term, Sj(T ) is given by Eqn. 4.30 with Qrot = θ2.5, and f0(j), S′(j) and b(j) comes from
Table 4.14. The pressure broadened line shape of Van Vleck and Weisskopf is used. This shape is valid for
p ≥ 1 mb and is given by Rosenkranz 1993, Eqn. 2.63, pg. 70.

F (f, f0(j)) =
1
π
·
(

f

f0(j)

)2 [
γc

(f − f0(j))2 + γ2
c

+
γc

(f + f0(j))2 + γ2
c

]
(4.35)

and γc is from (Rosenkranz 1993, pg. 81, Eqn 2A.5) See Rosenkranz 1993, Fig. 2.7 on pg. 67 for the low
pressure departure from linear line half-widths w.r.t. pressure.

γc(j) =
w(j)
1000

·
(
pdry · θx(j) + 4.8 · pH2O · θ0.8

)
(4.36)

• pH2O = ρw ·R∗ · T/mww = ρw · T/217

• pdry = p− pH2O

• w(j) and x(j) are given in Table 4.14

If Fig. 4.22 the 183 GHz line of water is shown along with the AMSU water sounding channels. Also
shown is the sounding channels of the ATMS instrument, scheduled for flight on the NPOESS/NPP platform
in 2006.

Table 4.14: Water vapor microwave line parameters
Upper Lower f0(j) S′(j) b(j) w(j) x(j)

J K−1 K1 J K−1 K1 (GHz) cm2·Hz (Ghz/bar)
6 1 6 5 2 3 22.23508 1.2720e-14 2.143 2.81 0.690
3 1 3 2 2 0 183.31009 2.2540e-12 0.668 2.81 0.640
5 1 5 4 2 2 325.15292 2.6430e-12 1.540 2.78 0.680
4 1 4 3 2 1 380.19737 2.4090e-11 1.048 2.84 0.540
4 2 3 3 3 0 448.00108 2.5190e-11 1.405 2.63 0.660
1 1 0 1 0 1 556.93600 1.5330e-09 0.159 3.21 0.690
2 1 1 2 0 2 752.03323 1.0150e-09 0.396 3.06 0.680
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Figure 4.22: The water absorption coefficient at 183 GHz (see text for description)

4.2.3 Liquid water absorption coefficient, κH2O−liq
n

The liquid water absorption coefficient in nepers/km is given as a function of frequency (GHz), liquid water
amount (g/M3), and temperature, (K), in Liebe et al. 1991 and Liebe 1986.
In these references the equation for complex refractivity of liquid water droplets, N = N ′ − i ·N ′′ is given in
terms of the complex dielectric permittivity ε = ε′ − i · ε′′ and a dielectric parameter η = (2 + ε′)/ε′′). The
various forms of this equation are

N ′′ =
ρl · 4.5

ε′′(1 + η2)
(4.37)

=
ρl · 4.5 · ε′′

ε′′ + (2 + ε′)2
(4.38)

It is also possible to show that

N ′′ = −ρl · 1.5 · �
(
ε− 1
ε+ 2

)
(4.39)

= −ρl · 1.5 · �
(

(ε′ − 1)− i · ε′′
(ε′ + 2)− i · ε′′

)
(4.40)

= ρl · 1.5 · 3 · ε′′
ε′′ + (2 + ε′)2

(4.41)

Eqn. 4.39 is the form used in the MIT code. The absorption coefficient is related to the complex refractivity
by
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κH2O−liq
n (f, ρl, T ) = 0.04191 · f ·N ′′ (4.42)

= −0.06286f · ρl · �
(
ε− 1
ε+ 2

)
(4.43)

The the complex permittivity, ε, of water is given by a 7 parameter double Debye model (page 668 of Liebe
et al. 1991)

ε =
ε0 − ε1

1− i · (f/γ1)
+

ε1 − ε2
1− i · (f/γ2)

+ ε2 (4.44)

with the Debye primary and secondary relaxation frequencies (γ1, γ2), permittivity parameters (ε0, ε1, ε2),
and inverse temperature parameter (θD) are given by

• γ1 = 20.20 + 146.4 · θD + 316 · θ2D
• γ2 = 39.8 ∗ γ1

• ε0 = 77.66− 103.3 · θD

• ε1 = 0.0671 · ε0
• ε2 = 3.52 + 7.52 · θD

• θD ≡ 1− 300/T

Eqn. 4.44 can also be written in terms of the real, ε′ and imaginary ε′′ components

ε′ =
ε0 − ε1

1 + (f/γ1)2
+

ε1 − ε2
1 + (f/γ2)2

+ ε2 (4.45)

and

ε′′ =
(ε0 − ε1) · (f/γ2)

1 + (f/γ1)2
+

(ε1 − ε2) · (f/γ2)
1 + (f/γ2)2

(4.46)

4.2.4 Nitrogen absorption coefficient, κN2
n

The nitrogen absorption coefficient in nepers/km is given as a function of frequency (GHz), pressure (mb),
and temperature, (K), as

κN2
n (f, p, T ) = c0 · p2 · f2 · (300/T )3.55 (4.47)

The coefficient for nitrogen is given as 1.056 ·10−12 nepers·cm−1·bar−2·GHz−2 (Rosenkranz 1993, pg. 74) and
must be converted to the units of nepers·km−1·mb−2·GHz−2. Also, the nitrogen mixing ratio of qN2 = 0.78084
is included in the constant.

c0 = (0.78084)2 · 1.056 · 10−12 ·
(

10−3 bar
mb

)2

·
(
105 cm

km

)
= 6.4 · 10−14 (4.48)
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Table 4.15: Ozone microwave line parameters
Upper Lower f0(j) S′(j) b(j) w(j) x(j)

J K−1 K1 J K−1 K1 (GHz) cm2·Hz (Ghz/bar)
6 0 6 5 1 5 67.3562 6.4920e-14 0.079 2.40 0.760

12 1 11 11 2 10 76.5337 6.6380e-14 0.332 2.30 0.760
13 3 11 14 2 12 93.9950 6.9380e-14 0.495 2.23 0.760
1 1 1 0 0 0 118.3645 7.7290e-14 0.009 2.48 0.760

27 5 23 28 4 24 119.2776 5.5980e-14 1.891 2.13 0.760
18 4 14 19 3 17 175.4457 2.0810e-13 0.916 2.14 0.760
10 0 10 9 1 9 184.3778 8.7040e-13 0.206 2.35 0.760
22 2 20 21 3 19 184.7487 2.8670e-13 1.082 2.21 0.760
32 6 26 33 5 29 185.5568 7.3710e-14 2.654 2.13 0.760
17 4 14 18 3 15 193.3513 2.5440e-13 0.841 2.14 0.760

4.2.5 Ozone absorption coefficient, κO2
n

The absorption coefficient for ozone is a function of frequency (f in GHz), pressure (p in mb), temperature
(T in K), and amount of 16O3 derived from ozone density (ρo in g/M3 and is given by (Rosenkranz 1993,
Eqn. 2A.1, pg. 80)

κO3
ν (f, p, T, ρo) = 10−4 · nO3 ·

∑
j≥0

Sj(T ) · F (f, f0(j)) (4.49)

The constant 10−4 is a conversion from 10−9 GHz/Hz and 10+5 cm/km. The ozone number density, No, is
given in units of molecules/cm3 by

No =
(

10−2 M
cm

)3

·
(
Na

mwo

)
· ρo =

6.0221367 · 1017

47.998
· ρo = 1.255 · 1016 · ρo (4.50)

The strength term, Sj(T ) is given by Eqn. 4.30 with Qrot = θ2.5, and f0(j), S′(j) and b(j) comes from
Table 6.

The same pressure broadened line shape as the water absorption (Eqn. 4.35 is used for ozone with γc

from (Rosenkranz 1993, pg. 81, Eqn 2A.3)

γc(j) =
w(j)
1000

· p · θx(j) (4.51)

and w(j) and x(j) are given in Table 4.15.
The ozone lines dominate in the stratosphere (see Fig. 3.2) and, therefore, are quite narrow (≈ 60 MHz)

while the AMSU-B pass-bands in the 183 GHz region are one the order of a GHz. The net effect of the ozone
lines is negligible in this region.
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4.3 H2 Opacity (Outer Planet Atmospheres)

In the infrared region of 5 µm (2000 cm−1) to 10 µm (1000 cm−1) the infrared spectra is dominated by
vibrational-rotational bands of methane (7.7 µm), acetylene (13.7 µm), and ethane (12.2 µm). These lines
form in the stratosphere which has been warmed by the thermalization of solar absorption in the near IR
bands and, therefore, are in emission relative to the continuum radiation emerging from the cooler cloud deck
region of the atmosphere. Acetylene (C2H2) and ethane (C2H6) are produced by methane (CH4) photolysis
and are usually very low abundances. These species diffuse downward and are eventually converted back to
methane in the deep troposphere. The abundance as a function of location and time are not well known
and, therefore, acetylene and ethane cannot be used to determine temperature. The methane abundance
is expected to be uniform with height and latitude since chemical equilibrium should bind all significant
quantities of carbon into methane and internal mixing should redistribute the methane. Methane is the
only usable specie for inversion of the temperatures in the stratosphere. After the temperature field of the
stratosphere is determined the abundance of acetylene and ethane can be derived from the spectra.

In the infrared region of 10 µm (1000 cm−1) to 50 µm (200 cm−1) for the outer planets the infrared
spectra is dominated by rotational bands of molecular Hydrogen, H2. Since H2 is a homo-nuclear diatomic
molecule with a covalent bond it does not absorb vibrational or rotational photons (see Herzberg, 1989).
If the molecule is distorted by collisions, however, it can absorb protons during the brief interval of the
collision when a transient dipole moment is induced. This is a weak absorption, however, the large quantity
of hydrogen in the outer planets causes this to be the principle absorber in the troposphere. In fact, it is the
radiation of energy from rotational transitions of H2 that causes the temperature minima at 100 mb in all
the outer planets.

Pressure (collisional) broadened spectra of diatomic molecules is quite complex, however, laboratory
measurements exist and there is a good theoretical and algorithmic description of this opacity. The major
opacity is caused by H2-H2 collisions, however, H2-Helium, and H2-CH4 are also significant. In some cases
(i.e., Neptune) the broadening by Nitrogen collisions is considered to be important.

Figure 4.23: Snapshot of Barney Conrath speaking at GISS, May 1985. Donald Hunten is the moderator of
the session. (NASA Conf. Publ. #2441 “The Jovian Atmospheres, 1986, pg. 18)

At 28 µm (354 cm−1) H2 can absorb a photon during a collision and make a transition from it ground
state to it’s second rotational level. This line is referred to a the S(0) line and is quite broad due to the
short duration of the collisions. This transition also only occurs when the two hydrogen atoms are aligned
anti-parallel (para-state).
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The next transition occurs at 17 µm (587 cm−1) and is called the S(1) line. This transition is from
the first rotational level to the third rotational level and only occurs when the hydrogen atoms are parallel
(ortho state). Transitions between para- and ortho-states are highly forbidden, however, they do occur in the
presence of paramagnetic molecules, aerosols, hazes, and at high temperatures over very long time scales (i.e.,
10’s of years to equilibrate). If the rotational levels of hydrogen are in equilibrium at the local temperature
(i.e., Boltzmann distribution) then the population of levels and the ratio of para- to ortho-hydrogen would
be as follows:

Table 4.16: Hydrogen ortho/para ratio vs temperature
97 K 194 K 292 K

fpara = para/total 0.503 0.261 0.251
level-5 para 0.000 0.000 0.001
level-4 ortho 0.000 0.000 0.004
level-3 para 0.000 0.020 0.086
level-2 ortho 0.003 0.070 0.115
level-1 para 0.497 0.717 0.662
ground ortho 0.500 0.191 0.132

• S(0) is a transition from J=0,I=0 (ground state) to J=2,I=0 (E(J)=354 cm−1 ,where J is the rotational
quantum number and I is the nuclear spin quantum number

• S(1) is a transition from J=1,I=1 (E(J)=118 cm−1) to J=3,I=1 (E(J)=705 cm−1.

• S(2) is a transition from J=2,I=0 (E(J)=354 cm−1) to J=4,I=0 (E(J)=1168 cm−1.

• S(3) is a transition from J=3,I=1 (E(J)=705 cm−1) to J=5,I=1 (E(J)=1737 cm−1.

Table 4.17: Hydrogen rotational energy levels
Hydrogen Rotational Energy Levels

(adapted from Chamberlain & Hunten (1987)
(and Bachet et. al (1983, Table 1)

Rel. Population
line wavelength wavenumber Type 77 K 195 K 292 K
S(0) 28.2 µm 354.4 cm−1 Ortho ↑↑ 0.500 0.191 0.132
S(1) 17.0 µm 587.1 cm−1 Para ↑↓ 0.497 0.717 0.662
S(2) 12.2 µm 814.4 cm−1 Ortho ↑↑ 0.003 0.070 0.115
S(3) 9.7 µm 1034.7 cm−1 Para ↑↓ 0.020 0.086

While transitions for ∆J ± 1 are highly forbidden they occur over long lengths of time (order of years)
via interactions with atomic hydrogen and paramagnetic species (Massie and Hunten, 1982). At high temper-
atures the ratio of ortho to para hydrogen is given by the nuclear statistical weights and is called “normal”
hydrogen. It has an equilibrium ratio of 3:1 (ortho:para) or a para fraction, fp, of 0.25. At Saturnian tem-
peratures the ortho:para ratio varies from 1:1 (≈ 95 K) to 3:1 deep in the atmosphere, that is 1

4 ≤ fp ≤ 1
2 .

In convective regions we expect to find non-equilibrium ratio’s as high fp gases are convected into lower fp

regions.
The ratio of the S(0) to S(1) line is strongly dependent on the population of the para- and ortho- levels

which is a function of temperature. Usually, equilibrium hydrogen at the local temperature is assumed
everywhere, however, if non-equilibrium processes, such as convection, were important the opacity would also
be a function of para-fraction (i.e., ratio of molecules in the para-state to the total number of molecules).

At high temperatures the ratio of para-hydrogen to the total number of hydrogen molecules is 0.25. In
Jupiter’s tropopause (T ≈ 120 K) the para-fraction would equilibrate to about 0.4.

Convection is the troposphere of Jupiter and Saturn could cause the para-fraction to deviate from its
equilibrium value of 0.4. There are two points in the opacity which are insensitive to the para-fraction and
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these two points are used to perform a refinement of the temperature inversion. Then the para-fraction is
changed until the differences between the spectrum and model spectrum are minimized. In this way it was
discovered that the equatorial region of Jupiter has a para-fraction equal to a high temperature equilibrium
value while the mid- and high-latitude have para-fractions typical of the tropopause. This suggests that
convection in the equatorial region reaches to high levels, which may be related to the dynamics of the
equatorial jet.

Given the volumetric mixing ratio (i.e., the ratio of the number of H2 molecules to the total number of
molecules), qH2 , the local density, ρ, and the extinction coefficient (cm2/gm), κ, the optical depth can be
calculate as:

dφν = qH2ρκνdz (4.52)

Since κν results from collisions with other species it is reasonable that the mass absorption coefficient
for hydrogen should be proportional to density (or pressure) to first order.

κν = ανqiρ (4.53)

dφν = qH2qiρ
2ανdz (4.54)

Since measurements of the opacity are usually done at STP then we can write the optical depth as:

dφν = qH2qi
ρ2

ρ2
STP

α′
νdz (4.55)

where, α′ has the units of cm−1-amagat−2 and ρ/ρSTP has the units of amagats2. The total hydrogen opacity
is then written as:

dφν = qH2

ρ2

ρ2
STP

dz ·
N∑

i=1

qiα
′
ν(i) (4.56)

Usually, for the outer planets only three significant species affect the hydrogen opacity, these are:

dφν = qH2

ρ2

ρ2
0

dz · (qH2α
′
ν(H2) + qHeα

′
ν(He) + qCH4α

′
ν(CH4)) (4.57)

4.3.1 The Semi-Empirical Hydrogen Model

To calculate the hydrogen opacity at a wavenumber ν the “semi-empirical” formulation developed by Birn-
baum and Cohen (1976) is employed. A summary of the semi-empirical equations is presented in this appendix
along with the experimentally determined coefficients used in the determination of of the hydrogen opacity
Aν . The notation follows the original notation of Birnbaum and Cohen wherever possible.

The hydrogen-hydrogen and hydrogen-helium opacity at any wavenumber ν is given by the summation
over all possible rotational transitions j, j′ and over all possible binary interactions specified by the angular
quantum numbers L, λ, such that

Aν = A0 · ν ·
(
1− e−hcν/kT

)
·
∑
L,λ

·
∑
j,j′

ρb(j) · (2j + 1) · S(L, λ, j, j′) (4.58)

where j′ is determined by the appropriate selection rules (i.e., j′ = j for translational, j′ = j+2 for rotational,
etc.). The value A0 is equal to 8π4N2

0 /(3h) for hydrogen-hydrogen collisions and 16π4N2
0 /(3h) for hydrogen-

helium collisions. The function ρb(j) is the population probability of level j given by Boltzmann statistics.
For equilibrium hydrogen the Boltzmann factor is given by



Chapter 4: Absorption Coefficients Chris Barnet August 30, 2006 119

ρb(j) =
gj · e−E(j)/kT∑

k

gk · (2k + 1) · e−E(k)/kT
(4.59)

where gi is the nuclear statistical weight and E(i) is the excitation energy of level i. The value of gi is equal
to 1 for para states (e.g., i = 0, 2, 4..) and 3 for ortho states (e.g., i = 1, 3, 5..). If a non-equilibrium para
hydrogen fraction fp is specified then the Boltzmann factor is given by (Dore et al., 1983)

ρb(j) =
fp · gj · e−E(j)/kT∑

k=even

gk · (2k + 1) · e−E(k)/kT
+

(1− fp) · gj · e−E(k)/kT∑
k=odd

gk · (2k + 1) · e−E(k)/kT
(4.60)

The function S(L, λ, j, j′) is a product of the strength of induced dipole moment SLλ, where L and λ
represent the quantum numbers of angular dependence (Birnbaum and Cohen, 1976), the coupling of the
angular momentum C(j, L, j′ : 00), and a line shape function Γ(L, ν, νjj′).

S(L, λ, j, j′) = SLλ · C(j, L, j′ : 00)2 · Γ(L, ν − νjj′) (4.61)

The Clebsch-Gordan coefficient’s C(j, L, j′ : 00) are a measure of the average coupling of the angular
momentum of the interacting molecules. The empirical line-shape function Γ(L, ν − νjj′) is specified by two
parameters, τ1 and τ2, and is defined as

Γ(j, k) =
τ1
π
· z ·K1(z)
(1 + ω2 · τ2

1
)
· exp

(
τ2
τ1

+ τ0 · ω
)

(4.62)

where

τ0 =
h

4πkT
, τ2

3 = τ2
2 + τ2

0 , (4.63)

z =
τ3
τ1
· (1 + τ2

1 · ω2
)
, ω = 2π · c · (ν − ν(j, j′)) , (4.64)

,
and K1(z) is the Bessel Function of the 2nd kind.
Only three components are used in practice, the isotropic overlap term (L = 1, λ = 0), the anisotropic

overlap term (L = 1, λ = 2). and the anisotropic quadrupole induced term (L = 3, λ = 2). The strength
and shape functions for the anisotropic cases are indistinguishable (Cohen et al., 1982) and will simply be
referred to with a subscript q. The isotropic term will be denoted by i.

It is convenient to divide the opacity function into a translational component (i.e., j′ = j) and a
rotational component (i.e., j′ = j + 2). All other transitions are considered negligible in the wavelength
regions of interest (Cohen et al., 1982). In this case Eqn. 4.58 reduces to

Aν = Aω · Si · Γi(ν) +Aω · Sq · Γq(ν) ·
∞∑

j=0

ρj · (2j + 1) · C2
t (j)

+ Aω ·
∑
jj′

ρj · (2j + 1) · Sq · Γ(L, ν − ν(j, j + 2)) · C2
r (k) (4.65)

where Aω ≡ A0 · ν · (1− exp(−hcν/kT ) and the functions C2
t (j, j) and C2

r (j, j + 2) are the Clebsch-Gordan
coefficients for translational and rotational quadrupole transitions, respectively.

C2
t (j, j) = C(j, 2, j : 00)2 =

j(j + 1)
(2j − 1)(2j + 3)

(4.66)

C2
r (j, j + 2) = C(j, 2, j + 2 : 00)2 =

3(j + 1)(j + 2)
2(2j + 1)(2j + 3)

(4.67)
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The coefficients Si, Sq, τ1 and τ2 are temperature dependent. The authors used laboratory hydrogen
spectra to solve for the least squares coefficients in the following manner:

τ1 = τ10 · (T/T0)e1 , τ2 = τ20 · (T/T0)e2 , (4.68)

S = S0 · (T/T0)e0 for H2-He,
S = S0 + e0 · T for H2-H2.

The coefficients used in the numerical model of the atmosphere are given in Table 4.18. The H2-H2 values
are taken from Dore et al. (1983) and Bachet et al. (1983), and the H2-He values are taken from Bachet
(1988).

Table 4.18: Semi-empirical hydrogen band model coefficients
Semi-Empirical Band Model Coefficients for

Hydrogen-Hydrogen and Hydrogen-Helium Gases
(Source: Bachet (1988), Dore et al. (1983),

and Bachet et al. (1983))
H2-H2 H2-He

isotropic quadrupole isotropic quadrupole
T0 - - 273.15 77.4 77.4
S0 - - 178.00 24.49 16.93
e0 - - 0.4091 1.00 +0.50
τ10 - - 4.6800 1.859 8.045
e1 - - -0.605 -0.50 -0.50
τ20 - - 2.2300 12.43 2.007
e2 - - -0.607 -0.50 -0.50

Notes:

1. τ ′s are given in units of 10−14 seconds, and e′s are dimensionless.

2. S is given in units of K· Angstrom6 which can be converted into ergs· cm6 by multiplying by k·(10−8)6 =
1.38 · 10−64 ergs · cm6/(K · angstrom6).

4.4 The Rigid Harmonic Oscillator Band Model

This section is a summary of a review article by Cess and Tiwari (1972). The original symbols are used
whenever possible, however, the main motivation for including a summary in this appendix is to translate the
review article into the symbols and notation used within this investigation for the purpose of understanding
the assumptions within the band model. The rigid harmonic oscillator molecular band model is used for the
strong vibrational bands of methane, ethane, and acetylene within the isothermal stratosphere region of the
outer planets and the CO2 bands on Earth, Venus, and Mars.

In band models it is assumed that within a set of vibrational transitions there are many rotational
transitions. Each rotational transition, denoted by its lower level j can be described by a Lorentzian line
profile Γj(ν) which is given by

Γj(ν) =
γj/π

γ2
j + (ν − νj)2

(4.69)

where νj is the wavenumber of the transition, ν is the wavenumber within the profile, γj is the half-width
of the line. The half-width of the line is caused by both natural lifetime τn and by the collision rate τc such
that, γi = h̄ · (τc + τn).
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The volumetric absorption coefficient (units of inverse length, cm−1) can be written in terms of the mass
absorption coefficient (units of cm2/gm) divided by density, which in turn is related to the oscillator strength
of the rotational line and the Lorentzian shape function

Aνj

P
=

κνj

Rg · T =
S′ · Γj(ν)
Rg · T . (4.70)

The value of line strengths are normalized as follows:

Sj =

∞∫
−∞

Aνj

P
· d(ν − νj) =

S′

Rg · T . (4.71)

The strength of a line is strictly a function of temperature for an ideal gas. The harmonic oscillator approx-
imation is used to characterize the strength of the lines as follows:

Sj =
2j · hc ·B

kT
· exp(−hc ·B · j2/kT ) (4.72)

where B is the energy spacing between rotational transitions, which for a rigid molecule is a constant. The
wavenumber of the rotational line transitions can be given as

νj � ν0 ± 2j ·B ≡ ν0 ± j · d (4.73)

where positive values represent the R branch and negative values represent the P branch. In both Eqn. 4.72
and Eqn. 4.73 the assumption that j is large has been made, so that the degeneracy (2j + 1) ≈ 2j and the
energy level j · (j + 1) ≈ j2. In a real spectra, there will be an asymmetry between the P and R branch due
to the low j values (i.e., Erot = hcν · j · (j + 1)) with a degeneracy of (2j + 1) and there usually will be a Q
branch associated with vibrational bending modes.

A band parameter A0 can be defined to simplify the expressions

A0 ≡
√

4kT ·B/hc (4.74)

such that the volumetric opacity of the transition can be expressed as

Aνj

P
=
j · S · (d/A0)2 · e−(d·j/A0)

2

γ2 + (ν − (ν0 ± j · d))2 (4.75)

Usually, a band “equivalent width” (also called band absorptance) is measured in the laboratory, where the
individual lines are not resolved. The average band equivalent width is related to the transmission function

Wb ≡
∞∫

−∞
[1− Tr] d(ν − ν0) (4.76)

and the transmission function is defined as

Tr = e−τν , where τν =

y∫
0

Aν · dy′ (4.77)

Where y is the optical path-length and Aν is the total absorption coefficient due to all lines within a spectral
region ν to ν + dν, which can be written as follows:

Aν =
∞∑

j=0

Aνj . (4.78)

In a real atmosphere, the collision broadened half width is proportional to pressure and inversely propor-
tional to the square root of the temperature. If the band model is restricted to strong lines in the stratosphere,
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the temperature is constant. The function Aνj/P can be evaluated at an effective pressure Pcg, which is
defined as the Curtis-Godson mean pressure, given by

Pcg ≡ 1
P
·

P∫
0

qi(P ) · P · dP (4.79)

For uniform mixing ratio, qi =constant, the Curtis Godson pressure becomes

Pcg ≡ P 2

2 · P =
P

2
(4.80)

In this way, τ can be related to measurements at STP

τ � Aν(Pcg)
Pcg

·
y∫

0

P · dy′ =
Aν(Pcg)
Pcg

· Pcg · y = Aν(Pcg) · y (4.81)

Even with all the approximations made thus far Eqn. 4.75 cannot be solved directly. Three special
cases are usually explored, the linear limit, the square root limit, and the logarithmic or high pressure limit.
These will be combined into a band correlation function that smoothly makes transitions from one type of
function to the other.

4.4.1 Linear Limit: Optically Thin

The linear limit is derived by assuming that τν is optically thin. In the optically thin case the exponential in
4.76 can be approximated by the first terms of a Taylor expansion

e−τ � 1− τ = 1−Aν · y (4.82)

and the equivalent width becomes

Wb = P · y ·
∞∫

−∞

Aν

P
· d(ν − ν0) ≡ P · y · S (4.83)

In the linear limit the equivalent width is simply proportional to pressure. This result is achieved regardless
of the band model utilized.

In Fig. 4.24 the synthetic molecular rotational spectrum for the CO2 ν2 band in Earth conditions near
10 mb is shown. The molecule is assumed to be rigid. This is the “linear limit” of the band model. Band
model #1 is given by Eqn. 4.96, Band model #2 is given by 4.97 and direct integration is using Eqn. 4.76.

4.4.2 Square Root Limit: Strong, non-overlapping lines

The square root limit is found by assuming that the lines are strong and do not overlap. Non-overlapping
lines require that the line width γ is much less than the line spacing d. A strong line requires that the optical
depth is large at the line center. These two criterion can be written as follows:

Sj · P · y
π · γj

>> 1 and
γj

d
<< 1 (4.84)

The band equivalent width can be written as as a sum of all the non-overlapping rotational lines

Wb = 2 ·
∑

j

∞∫
−∞

[
1− e−{Sj ·P ·γj/(π·(ν−νj)

2)}
]
· d(ν − νj) (4.85)
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Figure 4.24: Transmittance model for carbon dioxide at 10 mb. At this pressure we are in the linear limit of
the rigid band model.

The inner integral is of the form

∞∫
−∞

(
1− e−β2/x2

)
· dx = 2 · β · √π (4.86)

which results in

Wb = 4 ·
√
γ · P · y · S ·

[
d

A0

]
·
∑

j

(
j · e−(d·j/A0)

2
) 1

2
(4.87)

The summation over many lines can be approximated by an integral over j which will result in

Wb = 2
3
4 · Γ

(
3
4

)
·A0 ·

√
(4γ/d) · P · y · S/A0 (4.88)

� 2.06 ·A0 ·
√

(4γ/d) · P · y · S/A0 (4.89)

where Γ
(

3
4

)
is the mathematical gamma function and not the Lorentzian line profile.

In Fig. 4.25 the synthetic molecular rotational spectrum for the CO2 ν2 band in Earth conditions near
100 mb is shown. This is the “square root limit” of the band model. Band model #1 is given by Eqn. 4.96,
Band model #2 is given by 4.97 and direct integration is using Eqn. 4.76.

4.4.3 Logarithmic Limit: Strong Overlapping lines

The final limit is where the pressure, and therefore the Lorentzian half-width is large. In this domain the lines
all overlap and blend. The value of the opacity for a group of overlapping strong lines can be approximated
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Figure 4.25: Transmittance model for carbon dioxide at 100 mb At this pressure we are in the square root
limit of the rigid band model.

using an Elsasser band model (Cess and Tiwari, 1972 p.238) and is equal to the ratio of the strength of an
individual line divided by the separation between lines

Aν

P
=
∑

Aνj

P
=
∑ Sj · γ/π

γ2 + (ν − νj)2
≈ Sj

d
. (4.90)

The value of j � (ν − ν0)/d, and a new variable can be defined

ξ =
j · d
A0

=
(ν − ν0)
A0

. (4.91)

In this case the band equivalent width can be written as

Wb = 2 ·A0 ·
∞∫
0

1− e−µ·ξ·e−ξ2

dξ (4.92)

where µ ≡ S · P · y/A0. This function can be shown to asymptotically approach Wb → 2 · A0 ·
√

ln(µ) as
µ >> 1. Edwards and Menard (1964) show that for a non-rigid rotor that Ab → A0 · ln(µ) as µ >> 1 and
empirically the logarithmic limit is more appropriate.

In Fig. 4.26 the synthetic molecular rotational spectrum for the CO2 ν2 band in Earth conditions near
1 Bar is shown. This is the “ln limit” of the band model. Band model #1 is given by Eqn. 4.96, Band model
#2 is given by 4.97 and direct integration is using Eqn. 4.76.

4.4.4 Integrating the limit equations

The three limits of the band equivalent width (or band absorptance) can be summarized as follows:
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Figure 4.26: Transmittance model for carbon dioxide at 1000 mb At this pressure we are in the logarithmic
limit of the rigid band model.

Wb = A0 · µ when µ << 1 (4.93)

Wb = 2 ·A0 ·
√
β · µ when β << 1 and µ/β >> 1 (4.94)

W
b

= A0 · ln(µ) when µ >> 1 (4.95)

where β ≡ 4 · γ/d and µ = S · P · y/A0.
A correlation function which satisfies all the constraints of Eqn. 4.93 to Eqn. 4.95 (Cess and Tiwari,

1972 Eqn. 47) is given by

Wb = 2 ·A0 · ln
(

1 +
µ

2 + µ
1
2 · (1 + 1/β)

1
2

)
. (4.96)

Bezard et.al. (1984) applied an approximate form of Eqn. 4.96, which is valid for µ/β >> 1 and β << 1.
This form reduces to

Wb = 2 ·A0 · ln
(
1 +
√
µ · β

)
(4.97)

In Fig. 4.27 the curve of growth for the ν2 band of CO2 is shown. The values of log(Wb) from Eqn. 4.96
(Band Model #1), Eqn. 4.97 (Band model #2) and from a direct numerical integration of 4.75 are shown
as a function of log(P · y). The linear, square root, and asymptotic regions are annotated. The squares
represent values of the equivalent width which were calculated using a numerical integration of Eqn. 4.75.
At high pressures (i.e., log(P · N(P ) > 6) the integration method (symbols) deviates from the band model
(+symbols) since the molecule is assumed to be rigid and centrifugal stretching is becoming important.

In the Jovian and Saturnian tropospheric and stratospheric regions (i.e., 0.1 mb ≤ P ≤ 1000 mb) the
difference between Eqn. 4.97 and 4.96 is insignificant. Simulated spectra for the linear, square root, and
asymptotic limits are shown in Fig. 4.24, Fig. 4.25, and Fig.4.26, respectively.
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Figure 4.27: The curve of growth of a molecular band using a rigid band model illustrating the the linear,
square-root, and logarithmic domains using a direct integration (solid line) and the band models discussed
in the text

To derive atmospheric heating rates, the derivative of Eqn. 4.97 with respect to pressure needs to be
taken. In an atmosphere the optical path length y is related to STP by the “equivalent optical thickness”
of a gas given in cm-amagats, z. Since density increases with increasing pressure, the value of z will also
increase roughly in proportion to pressure. In addition, a unique emission angle will be assumed (for diffuse
radiation the value of µ0 = 2/3 is used). If z is the path length in cm-amagats then

y = z(P )/µ0 (4.98)

The Lorentz half width is known to be proportional to pressure for an ideal gas, so we will write the line
width in terms of pressure, i.e.,

γ ≡ γ0 · P (4.99)

The product of band strength and pressure S · P is a simple function of temperature, thus we can also write

S · P ≡ S0 (4.100)

Rewriting Eqn. 4.97 in terms of Eqn. 4.98 to Eqn. 4.100 yields

Wb = 2 ·A0 · ln
(

1 +

√
S0 · z
A0 · µ0

· 4 · γ0 · P
d

)
(4.101)

where z is the only variable which is an implicit function of pressure. To simplify the expression in Eqn.
4.101 a temporary variable will be defined as follows

β =
√

4 · S0 · γ0/(d ·A0 · µ0) (4.102)

The derivative with respect to pressure is taken as follows:
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dWb

dP
= 2 ·A0 · 1

1 + β · (z · P )
1
2
· d
dP

(
1 + β · (z · P )

1
2

)
(4.103)

which is equal to

dWb

dP
= 2 ·A0 · d [ln(z · P )]

dP
·
(

1 +
(

d ·A0 · µ0

4 · z · P · S0 · γ0

) 1
2
)−1

(4.104)

Eqn. 4.104 is the form utilized in the radiative transfer equation. Example band parameters A0, S0, d,
γ0 are summarized in Table 4.19 and Table 4.20.

Table 4.19: Rigid band model coefficients for hydrocarbons
Rigid Band Model Coefficients

Strong Hydrocarbons
(Cess & Chen, 1975)

center major S A0 γ0 d
molecule µm lines cm−2·am−1 cm−1 cm−1atm−1 cm−1

CH4 1.7 2ν3 3.0 124 0.075 10.5
CH4 2.3 ν1 + ν4 20.0 124 0.075 10.5
CH4 3.3 ν3 320.0 124 0.075 10.5
CH4 7.7 ν4 185.0 52 0.075 5.3
C2H2 3.0 ν3 323.0 31 0.090 2.4
C2H2 13.7 ν5 800.0 31 0.090 2.4
C2H6 3.4 1020.0 37 0.102 2.6
C2H6 12.2 ν9 34.0 37 0.102 2.6

Table 4.20: Rigid band model coefficients for CO2

Rigid Band Model Coefficients
Coefficients at 180 K

(Cess & Ramanathan, 1972)
wi A0 Si

molecule cm−1 cm−1 atm−1·cm−1

CO2 667 17.3 549
CO2 2350 15.4 4505
CO2 3715 32.2 102
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4.5 The Goody Random Band Model

The original paper by Goody (1952) is the best reference on the derivation of the Goody Random Band
model. Andrews et al. (1987) and Appleby (1980) also have a good comparative treatment of random band
models in general.

Figure 4.28: Snapshot of Richard M. Goody upon receiving the Bowie Medal at the 1998 AGU meeting

For complex molecular bands, where a large number of overlapping overtone bands are present, the line
positions and line strengths appear random. The “solar” bands (e.g., methane) in the visible and near IR part
of the spectrum result from a large number of overtones. Although the band model presented by Goody was
originally presented for the terrestrial water infrared spectrum, the methane spectrum on the outer planets
also has a random appearance and is suitable for the Goody random band model.

Goody (1952) presents a derivation where N(ν1..νn) ·dν1..dνn is the probability that a line will be found
in the wavenumber interval ν1 to ν1 + dν1 through νn to νn + dνn. All line arrangements are considered
equally probable. In addition, a probability P (S) that a line will have a strength between S and S + dS is
given by

P (S) =
1

σ
· e−S/σ (4.105)

.
The Eqn. for transmission is equal to the product of a large number of lines, each with a line shape function
Γ(γ, ν − ν0). If the number of lines approaches infinity then the transmission function is shown to be

Tr = exp


−1

d
·

∞∫
0

ρ · z · σ · Γ(γ, ν)
1 + ρ · z · σ · Γ(γ, ν)

· dν

 (4.106)

where d is the average spacing of the lines and Γ(γ, ν) is the line shape function, which will be taken as the
Lorentzian line profile given by

Γ(γ, ν) =
γ/π

γ2 + ν2
. (4.107)

For a Lorentzian profile, Eqn. 4.107 reduces to
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Tr = exp
(
−ρ · z · σ · γ

d
· (γ2 + ρ · z · σ · γ/π)) (4.108)

In practice the following substitutions are made

a = (ρ/ρstp) · z = zi/µ0 = optical path− length, (4.109)

κν = ρstp · σ/d = absorption coefficient, (4.110)

yν = γ/d = pressure coefficient. (4.111)

The equivalent width of a band of lines can be written in terms of the transmission function as

Wb ≡ ∆ν · (1− e−τ ) (4.112)

= ∆ν −∆ν · e−a·κν ·[1+a·κν/(π·yν ·P )]−
1
2 . (4.113)

In general, the parameters κν and yν vary slowly over a band average, so that the average values, < κ > and
< y >, can be used. The band averages of κν and yν are defined as

< κ >=
1

∆ν

∫
∆ν

κν · dν and < y >=
1

∆ν

∫
∆ν

yν · dν (4.114)

where the integral is carried out over the band regions ∆ν. Similar averages are taken over the solar flux Fs

to yield < Fs >. The transmission function is then calculated by substitution of < κ > and < y > for κν

and yν , respectively. The heating terms K(t, h) can be calculated from the flux term

K(t, h) = µ0(h)· < Fs > ·∆ν · d < Tr >

dP
= µ0 · < Fs > ·∆ν · e−<τ> · d < τ >

dP
(4.115)

where < τ > for a Goody random band model is given by

< τ >= a· < κ > ·[1 + a· < κ > /(π· < y > ·P )]−
1
2 . (4.116)

For this analysis, it is assumed that the coefficients < κ > and < y > are not functions of pressure (although
< y > does have a weak temperature dependence). The optical path-length is equal to a = zi/µ0 where zi is
roughly proportional to pressure. To simplify the derivation two temporary variables are defined:

α =< κ > /µ0 and β =< κ > /(π· < y > ·µ0) (4.117)

so that < τ > can be written as

< τ >= α · zi · [1 + β · zi/P ]−
1
2 . (4.118)

The derivative of < τ > can be taken by parts. After some reduction the derivative becomes

d < τ >

dP
= α · (1 + β · zi/P )−

1
2 ·
(
dzi

dP
− β

2(1 + β · zi/P )
· d{zi/P}

dP

)
(4.119)

In methane absorption β is a very small parameter and the equivalent path-length, zi, is roughly proportional
to pressure, allowing a simplification of Eqn. 4.119. For methane band absorption in the near infrared,
10−6 ≤ < κ > ≤ 10−5 cm-amagats−1 and < y >∼= 10 atm−1. In Saturn’s atmosphere (qch4 ≈ 0.004) the
path-length zch4 � 40000 · P , where P is in units of atm and zch4 is in units of cm-amagats. The values of
β ∼= 4 · 10−7 and β · zi/P ∼= 0.01. The derivative on the right hand side of Eqn. 4.119 is also very small. For
the numerical calculation the following form will be used for band i :

Ki(t, h) =< κi > · < Fs >i ·∆νi · dzi

dP
· e−<τi>/µ0 (4.120)
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where

< τi >=< κi > ·zi · [1 + β · zi/P ]−
1
2 and (4.121)

β =
< κi >

π· < yi > ·µ0
. (4.122)

In the radiative transfer program a simple temperature dependence will be assumed for < y >=< y0 >
·√T/300 as suggested by Fink et al. (1977).

For weak bands, the value of β · zi/P is considered to be small enough that Eqn. 4.120 can be reduced
to the weak band approximation

< τ >�< κi > ·zi (4.123)

K(t, h) =< κi > · < Fs >i ·∆νi
dzi

dP
· e−<τ>/µ0 (4.124)

The “weak band” approximation will be used for a number of methane bands where < y > data is unavailable.
Fink et al. (1977) published a list of random band coefficients derived from laboratory measurements

(Dick and Fink, 1977) of methane between 4500 and 10500 Angstroms, spaced at intervals of 10 angstroms.
The band coefficients were averaged for five solar band regions using the solar radiance as a weighting function;
the resulting averaged Goody random band coefficients, < κi > and < yi > which are tabulated in Table
4.21.

Table 4.21: Goody band model coefficients for Methane
Band Coefficients for the Goody random band

and the Weak band models for CH4 solar bands.
Source Band ∆ν < κ > < y > < Fs >
Name Center cm−1 km-am atm−1 W·cm−2

Wallace 1.3636 1200.0 12.500 - - 0.30963
Wallace 1.1257 850.0 9.500 - - 0.33355

Fink 0.9976 421.9 10.475 7.38 0.35023
Fink 0.8918 352.0 16.415 10.29 0.33715
Fink 0.8625 94.1 4.086 5.57 0.33505
Fink 0.7920 653.2 0.611 - - 0.33118
Fink 0.7263 473.8 1.618 - - 0.32034
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Chapter 5

Radiation Transfer

”If there’s one thing I can’t stand, it’s to be misunderstood by myself.” Steve Miller

5.1 Beer’s Law

We will use volumetric absorption coefficients (ı.e., κ given in units of inverse distance). Some texts use mass
absorption coefficients which need to be explicitly multiplied times density, ρ(z). The transmittance given
within a layer of thickness ∆z is given by

τν = exp(−k ·∆z sec(θ)). (5.1)

Transmittance is the fraction of electro-magnetic radiation propagating through a medium. The values
of transmittance range from zero (opaque) to one (completely transmissive).

Transmittance between the top of the atmosphere and level at z is a function of the quantity and
absorption of all gases. An alternate, and illustrative, definition of Beer’s law is:

The taller the glass, the darker the brew,
The less the amount of light that comes through.

5.2 Atmospheric Transmittance

The quantity k ·∆z is called the optical depth where zero is completely transmissive (no absorption). The
absorption coefficient, written in this way, is a strong function of pressure, temperature, and mixing ratio of
the radiatively active species.

In atmospheric science we usually model the atmosphere on a fixed pressure (isobaric) grid defined by a
set of pressure levels, p(L) for L = 1 to NL. The thickness of a “layer”, ∆z(L), is defined between p(L−1) at
the top and p(L) at the bottom. The L = 1 layer is a special case and p(0) is usually defined in some consistent
manner. The assumption being that effectively p(0) → 0 for the spectral region under consideration. Thus
we talk of NL layers corresponding to NL + 1 levels; however usually the value of p(0) is only specified deep
within the code and is only implicitly considered. In that case we can speak of NL layers with NL levels .

The bottom layer is also a case dependent special case and is defined at the surface pressure. This
pressure includes the effects of topography and local weather systems. Therefore, p(NL) ≡ Ps.

It is important to specify what levels the transmittance refers to. We will write the atmospheric “layer”
transmittance as τν(pi → pj , θ) to represent the transmittance between two levels at pressure pi and pj at
monochromatic frequency ν. If pi > pj then the radiation is “upwelling” and if pi < pj the radiation is
down-welling.

133
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τν(pi → pj , θ) = exp

(
−∆z(|pi − pj |) · sec(θ) ·

[
I∑

i=1

ki
n

])
(5.2)

The “layer-to-space” transmittance is written as τν(pi → 0, θ) to indicate that the transmittance is
over the column from the level as pi to the top of the atmosphere. For our purposes the layer to space
transmittance for level L can be written

τν(p(L)→ 0, θ) = τν(p(L− 1)→ 0, θ) · exp

(
−∆z(L) · sec(θ) ·

[
I∑

i=1

ki
n

])
(5.3)

All remote sounding concepts rely upon measurement of the atmospheres effect on atmospheric trans-
mittance, τ . For example, to compute layer-to-space transmittance, τ↑

τ↑ν (p,X, θ) = exp


−

∞∫
z′=z(p,X)

∑
i

κi(ν, p(z′),X, θ) · dz′

 (5.4)

where,

ν frequency in GHz (µW) or wavenumber (IR)
X geophysical state (T (p),H2O(p), O3(p), . . . , CH4(p))
κi absorption coefficient for species i
θ angle of observation from nadir
z(p,X) altitude as a function of pressure, p

• ∆z(L) is the thickness of the layer between the level at p(L) and the level at p(L − 1) in km’s, given
by the hydrostatic equilibrium equation, Eqn. 2.8,

∆P (L) = ρ(L) · g ·∆z(L) (5.5)

and ideal gas equation of state

P (L) = ρ(L) · R
∗

mw
· T (L) (5.6)

where g = 980.665 cm/s2 and R∗ = 8.31432 ·107 erg/mole/K. The thickness can be written as

∆z(L) =
(
10−5 cm

km

)
· R∗

mw(L) · g · T (L) · p(L)− p(L− 1)
p(L)

(5.7)

where mw(L) is the mean molecular weight for the layer and is given on the next page in Eqn. 3.110

• sec(θ) is the secant of the observational zenith angle, θ.

• T (L) is the average temperature between levels p(L− 1) and p(L)

T (L) ≡ T (L− 1) + T (L)
2

(5.8)

• For the microwave line-by-line code developed by Phil Rosenkranz, the average pressure, p(L), is defined
differently than the peff definition in Section 2.13.4.

p(L) ≡ p(z(L) = exp
(

(log(p(L− 1)) + log(p(L))
2

)
(5.9)

• ρw(L), ρl(L), ρo(L) are the average densities of water vapor, liquid water, and ozone, respectively in
units of g/M3 within the layer defined between levels p(L− 1) and p(L). It will be defined below.
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For the microwave κi
n is absorption given in units of nepers/km and will be discussed individually in

sections 4.2.1 to 4.2.5. The 5 species considered for this region of the microwave are

• κ1
n = κO2

n (f(n), p(L), T (L), ρw(L)), Section 4.2.1

• κ2
n = κH2O−vap

n (f(n), p(L), T (L), ρw(L)), Section 4.2.2

• κ3
n = κH2O−liq

n (f(n), T (L), ρl(L)), Section 4.2.3

• κ4
n = κN2

n (f(n), p(L), T (L)), Section 4.2.4

• κ5
n = κO3

n (f(n), p(L), T (L), ρo(L)), Section 4.2.5

See Section 4.2 for an example of these functions for 4 atmospheric levels.

5.3 The Infrared & Microwave Radiative Transfer Equation

H(sun)

θ

local
zenith

spacecraft

R (L,θ’)
D θ O

θ ’

p
surf

p(L)

p(L−1)

R
S

RA R
O

Figure 5.1: Illustration of components for thermal radiative transfer

The total monochromatic radiance, R(ν, θ,X), at frequency ν, zenith angle θ, for a atmospheric with
geophysical state, X, emerging from the top of the atmosphere can be broken into the following components

R(ν, θ,X) = Rs(ν, θ,X) Surface
+ Ra(ν, θ,X) Atmospheric Column
+ Rd(ν, θ, θ′,X) Down− welling
+ R�(ν, θ, θ�,X) Reflected Solar (5.10)

Each of these components will be discussed in detail in the following sections. The radiative transfer is
composed of four components, three of which are shown in Fig. 5.1: the contribution from a single layer,
RL; the surface radiance, Rs; and one component of the down-welling radiance, RD, emitted from a ring of
atmosphere at a pressure (altitude) p(L) and angle θ′.

• Rs(ν, θ,X) = contribution due to the surface radiance, averaged over the footprint, attenuated by the
atmospheric column of the observation.

• Ra(ν, θ,X) =
NL∑
L=1

RL(ν, θ) contribution due to all the layers within the IFOV.
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• Rd(ν, θ,X) = contribution due to the down-welling radiation from the entire atmospheric volume re-
flected by the surface and transmitted through the observed atmospheric column.

In addition, there are two other terms. In the microwave, the cosmic background radiation, Rb, is a
diffuse term that acts like a boundary condition for the down-welling thermal term, Rd. In the infrared and
microwave region the solar term, R�, accounts for the transmission of sunlight from the TOA through the
atmosphere at angle θ�, reflected from the surface, and transmitted out of the atmosphere at angle θ to the
spacecraft.

• Rb(ν, θ,X) = contribution due to the isotropic cosmic background radiation attenuated by the atmo-
sphere, reflected by the surface, and attenuated through the observed atmospheric column.

• R�(ν, θ, θ�, ρ�,X) is the contribution from the solar radiance reflected from the surface with solar
reflectivity, ρ�

Since the Planck function is linear in the microwave region (see Eqn. 1.25) then Eqn. 5.10 can be written
in terms of brightness temperatures as well

Θ(ν, θ) = Θs(ν, θ) + Θa(ν, θ) + Θd(ν, θ) + Θb(ν, θ) (5.11)

5.4 Radiance contribution from the surface

The radiance emerging at the top of the atmosphere is given by the contributions from the surface and
attenuated by the atmospheric transmittance. We will begin by considering only the radiation upwelling
from the surface emission.

The component of out-going radiance from the surface is given by a black-body radiance at the surface
skin temperature, Ts, multiplied by the surface emissivity, εν . Examples of emissivity are given in Section
3.10 (see Fig. 3.10 and Fig. 3.11 for the infrared and microwave, respectively). Additional discussion of
emissivity functions can be found in Section 8.7.

The surface radiance must pass through the entire atmosphere and is, therefore, multiplied by the column
transmittance from the surface to the top of the atmosphere. The monochromatic out-going surface radiance
is given by

Rs(ν, θ) = εν ·Bν(Ts) · τ↑ν (Ps, θ) (5.12)

where we employ a short hand notation for the surface to space transmittance

τ↑ν (Ps, θ) ≡ τν(Ps → 0, θ) (5.13)

The monochromatic brightness temperature equation for the surface contribution is given by

Θs(ν, θ) = εν · Ts · τ↑ν (Ps, θ) (5.14)

and, as discussed in Section 5.10, the channel averaged equation for the surface contribution is given by

Θs(n, θ) = εn · Ts · τ↑n(Ps, θ) (5.15)

The surface component, Rs, is given as

Rs(ν, θ) = εν ·Bν(Ts) · τ↑ν (Ps,X, θ) (5.16)

• εν is the spectral surface emissivity, and
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• Bν(T ) is the Planck function, Bν(T ), which is the specific intensity (brightness) of a black-body emitter,
usually written as

Bν(T ) =
α1 · ν3

exp(α2·ν
T )− 1

(5.17)

• τ↑ν (Ps,X, θ) is the transmittance of the atmosphere from the surface, at pressure Ps to the instrument.

5.5 Radiance contribution from the atmosphere

For a thin layer of the atmosphere, defined between pressure layers at p(L) and p(L− 1), the monochromatic
radiance contribution at the top of the atmosphere from the atmospheric layer is analogous to the surface
radiance and is given by

RL(ν) = εeff (L) ·Bν(T (L)) · τν(p(L− 1)→ 0, θ) (5.18)

= [1− τν(p(L)→ p(L− 1), θ)] ·Bν(T (L)) · τν(p(L− 1)→ 0, θ) (5.19)
= Bν(T (L)) · [τν(p(L− 1)→ 0, θ)− τν(p(L)→ 0, θ)] (5.20)
= Bν(T (L)) ·∆τ↑ν (L, θ) (5.21)

∆τ↑ν (L, θ) ≡ τν(p(L− 1)→ 0, θ)− τν(p(L)→ 0, θ) (5.22)

The term (1 − τν(p(L) → p(L − 1), θ) in Eqn. 5.18 can be thought of as a effective emissivity of the layer.
When the layer is opaque the gas emits as a black-body; however, when completely transmissive we do not
see any contribution from that layer.

The proper derivation begins with the equation of radiation transfer (e.g., see Chandrasekar, 1960 or
Mihalis, 1978),

∂Rν

∂φν
=

1
µ

(Sν −Rν) (5.23)

∂Rν =
1
µ

(Sν −Rν) · ∂φν (5.24)

For an atmosphere in local thermal equilibrium with no scattering the radiation source function, Sν =
Bν(T ), can be described by the Planck function. The radiative transfer equation (e.g., see Mihalis 1978 pg.
38) is a function of the optical depth, φν , and the cosine of the zenith angle, µ,

∂Rν

∂φν
=

1
µ

(Bν −Rν) (5.25)

We can find an integration factor to obtain

∂Rν

∂φν
· e−φν/µ =

Bν(T )
µ

· e−φν/µ − Rν

µ
· e−φν/µ (5.26)

∂
(
Rν · e−φν/µ

)
∂φν

=
Bν(T )
µ

· e−φν/µ (5.27)

And then we can integrate the equation directly. The integration constant is the boundary condition, which
is the surface term we discussed earlier.
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Rν =
∫ 0

∞
Bν(T (z)) · e−φν/µdφ/µ (5.28)

We can change the integration parameter from optical depth, φ, to either altitude, z, or pressure, p

e−φν/µ · dφ
µ

=
∂τν
∂z

dz =
∂τν
∂p

dp (5.29)

so that

Rν =
∫ ∞

z=0

Bν(T (z))
∂τν
∂z

∂z (5.30)

The atmospheric radiance component, Ra, is the vertical integral of the Planck radiance as seen through the
level to space transmittance

Ra(ν, θ) =

0∫
p=Ps

Bν(T (p)) · dτ
↑
ν (p,X, θ)
dp

· dp (5.31)

This equation is the most important one for atmospheric sounding. In remote sounding the contribution
of a single channel usually comes from a narrow vertical region in which τ � 1

2 . See Section 8.4 on weighting
functions. For discrete radiative transfer algorithms the total contribution from the atmosphere is given by
the sum of the individual layer contributions over the entire isobaric grid

Ra(ν) =
NL∑
L=1

RL(n) =
NL∑
L=1

Bν(T (L)) ·∆τ↑ν (L, θ) (5.32)

In the microwave we can utilize the Rayleigh-Jeans approximation for write the total contribution from the
atmospheric column in terms of microwave brightness temperature, Θ,

Θa(ν) =
NL∑
L=1

ΘL(ν) =
NL∑
L=1

T (L) ·∆τ↑ν (L, θ) (5.33)

In the microwave spectrum used for remote sounding we can utilize the channel averaged transmittance
because the spectral characteristics of the species used for sounding (O2 and H2) do not interact with inferring
species such as water. This simplifies the atmospheric radiance computation and makes the radiative transfer
equation much more linear.

Θa(n) =
NL∑
L=1

ΘL(n) =
NL∑
L=1

T (L) ·∆τ↑n(L, θ) (5.34)

5.6 Solar Reflected Component

In a non-scattering atmosphere sunlight is absorbed by the atmospheric particles. We utilize the radiative
transfer equation (Eqn. 5.23) with the boundary condition (integration constant) equal to the solar radiance
at the top of the atmosphere. The solar energy propagates down to the surface at which point it is reflected
into the view of the satellite.

R� = ρ�(ν, θ, θ�) · τ↓↑ν (ps,X, θ, θ�) · Ω(t) ·H�(ν) · cos(θ) (5.35)

• The reflected solar component requires computation of the transmittance along the bi-directional path
from the sun to the surface, ps, and back to the spacecraft. For channel radiances the bi-directional
transmittance is NOT equal to the product of the down-welling and up-welling transmittances.
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∫
τ↓↑ν (ps,X, θ, θ�)dν �=

∫
τ↓ν (ps,X, θ�)dν ·

∫
τ↑ν (ps,X, θ)dν (5.36)

• H� is the solar radiance outside the Earth’s atmosphere. An example of a the high-resolution solar
radiance and the solar radiance convolved with the AIRS channel response function is shown in Fig.
5.2 .

• Ω is the solid angle, given in terms of the Sun’s radius and distance. It varies by ± 3.4% over the year.

Ω(t) = π ·
(

0.6951·109

D�(t)

)2

� 6.79 · 10−5 − 0.23 · 10−5 · cos(2π(t − t0)/ty) where, t is the time of year, ty
is the time the Earth takes to complete 1 orbit (365.25 days), and t0 is the perihelion date (Jan. 4 or
t0=4).

• The solar surface reflectivity, ρ�, is a function of surface type, zenith angle, solar zenith angle, azimuth
angle, and wavenumber.

Figure 5.2: Solar radiance spectra at 1 Astronomical Unit: A high resolution spectrum taken by the ATMOS
experiment on the Space Shuttle, the ATMOS solar radiance convolved with the AIRS channel response
function, resolution measurements by Thekaekara (1973) as diamonds, and reference Planck functions at
5600, 5800, and 6000 K

5.7 Monochromatic down-welling thermal component

The radiation from an atmospheric layer at p(L) emits radiation in all directions. Some of that radiation
reflects off the surface and into the solid angle of observation. The down-welling term requires integration
over all zenith angles, θ′, and azimuthal angles, α, and all levels.
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Rd(ν, θ) = τ↑ν (Ps,X, θ) ·
2π∫

α=0

π
2∫

θ′=0

ρν(θ, θ′, α) · sin(θ′) · cos(θ′) · dθ′ · dα

·
0∫

p=Ps

Bν(T (p)) · dτ
↓
ν (p,X, θ′)
dp

· dp (5.37)

• The thermal reflectivity, ρν(θ, θ′, α), is usually a small number � 1
π (1− εν) (except over ocean in SWIR

and the microwave).

• Effectively, there is a product of up-welling and down-welling transmittance so that this term is only
important in channels in which the transmittance is ≈ 1

2 .

where we employ the short hand notation for the surface to space transmittance (Eqn. 5.13) and a short
hand notation for the down-welling layer transmittance

∆τ↓ν (L, θ′) ≡ τν(p(L− 1)→ p(L), θ′) (5.38)
= τν(p(L− 1)→ Ps, θ

′)− τν(p(L)→ Ps, θ
′) (5.39)

But the monochromatic down-welling transmissivity is related to the upwelling transmissivity by

τν(p(L)→ Ps, θ
′
ν) =

τν(Ps → 0, θ′ν)
τν(p(L)→ 0, θ′ν)

(5.40)

so that

∆τ↓ν (L, θ′ν) =
τν(Ps → 0, θ′ν)
τν(p(L)→ 0, θ′ν)

− τν(Ps → 0, θ′ν)
τν(p(L− 1)→ 0, θ′ν)

(5.41)

Also, since the lines are resolved and not overlapping the channel averaged down-welling transmittance can
be written in terms of the upwelling level-to-space channel averaged transmittances in the form shown in
Eqn. 5.41

The order of integration can be changed in Eqn. 5.37

Rd(ν, θ) = τ↑ν (Ps,X, θ) ·
0∫

p=Ps

Bν(T (p))

·
2π∫

α=0

π
2∫

θ′=0

ρν(θ, θ′, α) · sin(θ′) · cos(θ′) · dθ′ · dα · dτ
↓
ν (p,X, θ′)
dp

· dp (5.42)

The relationship between upwelling and down-welling transmittance is incorrect if there are multiple
lines within the spectrum. therefore, it is much more complex in the infrared spectrum. We will begin by
discussion the microwave down-welling term.

5.8 Microwave Down-welling Computation

For the microwave we can write the discrete monochromatic down-welling equation written in units of bright-
ness temperature is then
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Θd(ν) = τ↑ν (Ps, θ) ·
∫

α

∫
θ′
ρν(θ, θ′, α) · sin(θ′) · cos(θ′)

NL∑
L=1

T (L)∆τ↓ν (L, θ′) · dθ′ · dα (5.43)

5.8.1 Down-welling thermal component: Microwave Lambertian surface

The reflectivity for a Lambertian surface (i.e., a surface with isotropic hemispherical reflectivity) satisfies the
conservation of energy∫

α

∫
θ′

ρ ·R · dθ′ · dα = R−Rs = (1− ε) ·R so that ρ(θ, θ′, α) =
1− εν(θ, θ′, α)

π
(5.44)

We assume that the radiation is azimuthally homogeneous so that the azimuthal integral yields a factor of
2π. The radiation can be considered to be coming from a ring at height p(L) and angle θ′. The monochromatic
down-welling thermal radiation is then given by

Θd(ν) = τ↑ν (Ps, θ) · (1− εν)
NL∑
L=1


T (L) · 2

π/2∫
θ′=0

sin(θ′) cos(θ′) ·∆τ↓ν (L, θ′) · dθ′

 (5.45)

We can then employ the diffusive approximation (see Section 5.9.1) where the angular dependence can be
computed at an effective angle, θ̄ν ≈ 55◦,

2

π/2∫
θ′=0

sin(θ′) cos(θ′) ·∆τ↓ν (L, θ′) · dθ′ = ∆τ↓i (L, θ̄ν) (5.46)

Θd(ν) = τ↑ν (Ps, θ) · (1− εν)
NL∑
L=1

[
T (L) ·∆τ↓ν (L, θ̄ν)

]
(5.47)

For the AMSU channels the lines are resolved and the relationship between upwelling and down-welling
transmittance (i.e., Eqn. 5.40) should hold for channel averaged transmittances to a high degree of accuracy.∫

ν

τ↑ν (Ps, θ) · (1− εν) ·∆τ↓ν (L, θ̄ν)Φ(ν) · dν ≈ τ↑n(Ps, θ) · (1− εn) ·∆τ↓n(L, θ̄ν) (5.48)

where Φ is the channel spectral response function (CSRF, see Section 5.10). The down-welling thermal
radiation can be written in terms of channel averaged quantities as

Θd(n, θ) = τ↑n(Ps, θ) · (1− εn) ·
NL∑
L=1

[
T (L) ·∆τ↓n(L, θ̄n)

]
(5.49)

5.8.2 Down-welling thermal component: microwave specular surface

The reflectivity for a specular surface is given by

ρ(θ, θ′, α) = (1− εν) · δ(θ, θ′) · δ(α, 180◦) (5.50)

where the Dirac delta function, δ(x1, x2), has the property that∫
x

f(x) · δ(x0, x) · dx = f(x0) (5.51)
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Substitution of Eqn. 5.50 into Eqn. 5.43 yields the monochromatic down-welling equation for specular
reflection

Θd(ν) = τ↑ν (Ps, θ) · (1− εν)
NL∑
L=1

[
T (L) ·∆τ↓ν (L, θ)

]
(5.52)

This equation is of the same form as Eqn. 5.47 except for Lambertian surfaces the down-welling transmittance
is calculated at the diffusive zenith angle, θ̄ν , instead of at the spacecraft’s zenith angle, θ.

The channel averaged down-welling thermal equation for specular reflection is given by

Θd(n, θ) = τ↑ν (Ps, θ) · (1− εν)
NL∑
L=1

[
T (L) ·∆τ↓ν (L, θ)

]
(5.53)

5.8.3 Down-welling cosmic background component

The universe has a background radiation (from the Big Bang) of 2.73◦. This radiation is mostly isotropic
and must be added to the computation. It follows from the previous section that the down-welling radiation
is attenuated at the diffusive angle for the entire column, θ̄,

Θb(n, θ) = τ↑n(Ps, θ) · (1− ε(n)) · Tb · τn(0→ Ps, θ̄) (5.54)

The practical application of this term is dependent on exactly how the instrument was calibrated and
whether or not the Rayleigh-Jeans approximation was employed. See Section 1.6 for a complete discussion
of this aspect.

5.9 Infrared Down-welling Term

The infrared down-welling term has felt by anyone who has stood out on a warm humid day. The warmth of
the hot atmosphere can be larger than the direct solar radiation in the mid- to far-infrared. For an upwelling
instrument or in-situ instrument the thermal down-welling integral must be computed properly.

In this section, we will show that for a space-borne measurement only certain channels will have a
measurable thermal down-welling radiation and even those channels the effect is still small. We can employ
many approximations, including

• because the surface reflectivity, ρ, is a small number, usually only a few %

• τ↑ · ∫ τ↓ is important only when τ � 1
2 because when the atmosphere is opaque (τ → 0) the surface

term vanishes can we cannot “see” the down-welling and when the atmosphere is transmissive (τ → 1)
there is little down-welling radiance.

• α and θ′ can be approximated by an effective diffusive angle by the mean value theorem.

• Usually the dependence on azimuthal angle is small the integral w.r.t.
2π∫
0

dα can be replaced by 2 · π.

We will begin by assuming that we can represent the thermal reflectivity by a mean value so that Eqn.
5.37 can be written as

Rd(ν, θ) � τ↑ν (Ps,X, θ) · ρ(ν, θ) · π ·R↓
ν (5.55)

The factor of π arises by assuming azimuthal symmetry,
∫
dα = 2π and assuming we can represent the

integral of zenith angle by a diffusive term
∫
cos(θ)sin(θ)dθ = 1

2 . In Kornfield and Susskind (Mon. Wea.
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τ(1−τ) = 0.25

1
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τ = 0.5τ(υ)
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τ = 0.5 τ(1−τ) = 0τ  = 0.52

2τ  = 0.25

Figure 5.3: Illustration of down-welling for channel averaged transmittance. (see text)

Review 105, 1977, p. 1605) the down-welling term is shown to be simplified as follows. First, we can insert
the surface radiance into the integral

R↓
ν =

1∫
τ(Ps)

Bν(T ) · dτ↓ =

1∫
τ(Ps)

Bν(Ts) · dτ↓ +

1∫
τ(Ps)

(Bν(T )−Bν(Ts)) · dτ↓ (5.56)

the left hand integral can be written exactly

R↓
ν = Bν(Ts)

(
1− τ↓ν (Ps)

)
+

1∫
τ(Ps)

(Bν(T )−Bν(Ts)) · dτ↓ (5.57)

Most of the absorption takes place very low in the atmosphere, say in the lowest 150 mb (i.e., between
1000 and 850 mb) and Bν(τ) − Bν(Ts) is a slowly varying function, therefore, the integral is adequately
represented by the mean value theorem

R↓
ν � Bν(Ts)

(
1− τ↓ν (Ps)

)
+Bν(T )−Bν(Ts)

(
1− τ↓ν (Ps)

)
(5.58)

where Bν −Bν(Ts) is the mean difference between atmospheric Planck function and the surface Planck
function over the range of most absorption. This equation can be re-written in the form of

R↓
ν � Fν ·Bν(Ts)

(
1− τ↓ν (Ps)

)
Fν ≡ 1 +

Bν −Bν(Ts)
Bν(Ts)

(5.59)

Fν differs from unity to the extent that the mean value of the atmospheric Planck function differs from
the surface Planck function. Notice that a similar derivation is done in Section 5.9.2 resulting in Eqn. 5.75.

Now we can see that monochromatic down-welling radiance is a function of the product of τ ·(1−τ). The
maximum thermal down-welling radiation will occur when τ ≈ 1

2 . For channel averaged transmittances this
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is not necessarily true as illustrated in the Fig. 5.3. In the top example the transmittance is constant across
the channel integration whereas in the bottom example the channel is a mixture of opaque and transmissive
components. In the top case, τ · (1− τ) is simply equal to 1

4 , as expected. But in the bottom case τ is zero
everywhere where 1− τ is unity and vice-a-versa. Therefore, the product is zero.

Therefore, the calculation of τ · (1 − τ) needs to be done in a channel averaged sense; however, we will
show shortly that this usually introduces a small error. Given that the entire down-welling radiance is small
at the spacecraft the error is tolerable. We can assume that the integral of the monochromatic product of τ
is related to the channel averaged product with a correlation factor, and this will be absorbed into the Fν

factor. Inserting Eqn. 5.59 into Eqn. 5.55 yields

Rd(ν, θ) = πρν(θ, θ̄i) ·Bν(Ts)Fν · τν(ps, θ)
(
1− τν(ps, θ̄)

)
(5.60)

Using the derivation in Section 5.9.2 a better fitting equation for channel averaged radiances might be

Rd(i, θ) = πρi(θ, θ̄i) ·Bνi
(T (p̄i))Fi · τi(ps, θ)

(
1− τi(ps, θ̄i)

)
(5.61)

Where pi is an effective pressure of down-welling for channel i. Each channel could have an effective diffusive
angle or the effective diffusive angle, θi, could be defined w.r.t. the angle of observation, θ.
We can also assume that the bi-directional reflectance is given by either

• ρi(θ, θ̄i) = 1−εi

π for nighttime and long-wave (i.e., νi < 2300 cm−1)

• ρi(θ, θ̄i) = ρi(θ, θ�) for daytime short wave channels.

To estimate the thermal down-welling term for AIRS channels we can calculate an approximate form of the
down-welling term using the nadir rapid algorithm

Rd(ν, θ) =
1
2
· (1− ε(ν)) · τ(ps) · (1− τ(ps)) ·Bν(T (p̄ = 700) (5.62)

Eqn. 5.62 is plotted as a solid line with *’s for channels used in the GSFC algorithm in Fig. 5.4. The
short-wave channels have a larger component of Rd(ν, θ) because the surface emissivity in this calculation for
the short wave region is 3 times greater (i.e., (1− ε̄S) = 0.15 versus (1− ε̄L) = 0.05 ). The estimated AIRS
NE∆T is also shown as a dotted line. The estimate of Rd(ν, θ) is on the order of a few noise units in the
long wave and 10 noise units in the short wave.

To first order, if we ignored the effect entirely, a larger εi would be determined and radiance residuals would
be smaller.

5.9.1 Diffusive Approximation in Radiative Transfer

The diffusive integral is usually written in terms of the third exponential integral

En(x) ≡
∞∫
1

e−x·t · t−n · dt =

1∫
0

e−
x
µ · µn−2 · dµ where, u =

1
t

(5.63)

The major assumption is that the integral expression is equal to the transmittance calculation at some angle,
θ̄. In the simple case where τ(θ) = exp(−x · sec(θ)) then the diffusive angle can be calculated directly from

2π · E3(x) ≡ 2π

π/2∫
0

e−x sec(θ′) · cos(θ′) · sin(θ′)dθ′ = π · e−x·sec(θ̄i) (5.64)

which has the solution
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Figure 5.4: Estimate of Thermal Down-welling Radiance for AIRS channels

cos(θ̄i) =
−x

ln(2 · E3(x))
(5.65)

Weak Line angles
τ(θ = 0) x E3(x) cos(θ) θ τ(θ)
0.000+ε 13.625 0.000 0.866 30.0◦ 0.00000

0.152 1.882 0.03494 0.707 45.0◦ 0.070
0.250 1.387 0.06571 0.683 46.9◦ 0.131
0.330 1.109 0.09497 0.666 48.2◦ 0.190
0.500 0.696 0.16777 0.634 50.6◦ 0.335
0.542 0.614 0.18819 0.627 51.2◦ 0.376
0.678 0.385 0.26198 0.600 53.1◦ 0.524

1.000−ε → 0.00 0.50000 0.500 60.0◦ 0.999

The use of the E3(x) function is implicitly assume the weak line approximation. If we define the following
function for strong lines

2π · S3(x) ≡ 2π

π/2∫
0

e−x
√

sec(θ′) · cos(θ′) · sin(θ′)dθ′ = π · e−x·
√

sec(θ̄i) (5.66)
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Strong Line angles
τ(θ = 0) x S3(x) cos(θ) θ τ(θ)
0.000+ε 28.404 0.000 0.866 30.0◦ 0.00000

0.019 3.947 0.00457 0.707 45.0◦ 0.009
0.108 2.222 0.03290 0.667 48.2◦ 0.066
0.250 1.382 0.08842 0.639 50.3◦ 0.178
0.341 1.076 0.12844 0.627 51.2◦ 0.257
0.500 0.693 0.20558 0.609 52.5◦ 0.411
0.589 0.530 0.50000 0.600 53.1◦ 0.504

1.000−ε → 0.00 0.50000 0.500 60.0◦ 1.000

5.9.2 Effective Diffusive Angle

The monochromatic formulation, assuming azimuthal symmetry, of the thermal down-welling radiation is
given by Eqn. 5.37

Rd(ν, θ) = τν(ps, θ)

ps∫
p=0

Bν(T (p))


2π

π/2∫
θ′=0

sin(θ′) cos(θ′)ρν(θ, θ′)
dτD

ν (p, θ′)
d ln(p)

dθ′


 · d ln(p) (5.67)

We can reorganize the equation as follows

Rd(ν, θ) =
∫
ν

φi(ν − νi) · τν(ps, θ)

ps∫
p=0

Bν(T (p))

d

[
2π

π/2∫
θ′=0

sin(θ′) cos(θ′)ρν(θ, θ′) · τD
ν (p, θ′) · dθ′

]

d ln(p)
· d ln(p) · dν

(5.68)
The monochromatic thermal down-welling transmittance is related to the upwelling transmittance

τD
ν (p, θ′) =

τν(ps, θ
′)

τν(p, θ′)
, (5.69)

however, this does not hold for channel averaged transmittances. We would have to calculate an entire new
rapid algorithm for this term. For the microwave, the use of Eqn. 5.69 for the channel averaged transmittance
is probably acceptable since there is less structure over the monochromatic integral.

The diffusivity approximation implicitly assumes that the transmittance and reflectivity, ρ(θ, θ′), have a
weak dependence on θ′ and, therefore, that we can represent the integral by the mean value theorem..

2π

π/2∫
θ′=0

ρ(θ, θ′) sin(θ′) cos(θ′) · τ↓ν (p, θ′) · dθ′ = ρ(θ, θ̄i) · π · τ↓i (ps, θ̄) (5.70)

In Fig. 5.5 we show an example of θ̄ for monochromatic spectra calculated using Eqn. 5.70. For strong
lines the angle approaches 48◦ and for weak lines the angle approaches 60◦ which can be explained by the√
p · sec(θ) and p · sec(θ) dependence of the transmittance in strong and weak lines, respectively.

For AIRS the same calculation could be applied to an ensemble and then a typical channel averaged value,
θ̄i, could be obtained for each channel i. Eqn. 5.68 becomes

Rd(ν, θ) = π

∫
ν

φi(ν − νi) · τν(ps, θ)ρν(θ, θ̄ν)

τ↓(ps,θ̄ν)∫
τ↓(0,θ̄ν)

Bν(T (τ↓)) · dτ↓(θ̄ν) · dν (5.71)
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Figure 5.5: Monochromatic Diffusivity Angle, θν , for the AIRS channels.

If we assume that most of the thermal down-welling radiation comes from a small region of pressure, p̄ν ,
where τ↓(p̄) � 1

2 then the Planck function can be pulled out of the integral and Eqn. 5.71 becomes

Rd(ν, θ) = π

∫
ν

φi(ν − νi) · τν(ps, θ)ρν(θ, θ̄ν) ·Bν(T (p̄ν))
[
τ↓ν (ps, θ̄ν)− τ↓ν (0, θ̄ν)

] · dν (5.72)

We can assume that the Planck function, reflectivity, effective pressure, and diffusivity angle are all adequately
represented by their channel averaged value and can be moved outside the frequency integral. In addition,
we can use Eqn. 5.69 to convert

τ↓(ps, θ̄ν) = 1 (5.73)

τ↓(0, θ̄ν) =
τ(ps, θ̄ν)
τ(0, θ̄ν)

= τ(ps, θ̄ν) (5.74)

so that Eqn. 5.72 becomes

Rd(ν, θ) = πρi(θ, θ̄i) ·Bi(T (p̄i))
∫
ν

φi(ν − νi) · τν(ps, θ)
[
1− τν(ps, θ̄ν)

] · dν (5.75)

5.9.3 Thermal Down-welling used in HIRS pathfinder processing

The following approximations are used
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Table 5.1: Down-welling Coef’s for HIRS
HIRS coefficients

HIRS freq
chl cm−1 Fi

6 733 0.71
7 748 0.49

13 2189 0.42
14 2212 0.55
18 2515 0.95
19 2662 0.95

1. The reflectance is assumed to be

π · ρi(θ, θ̄i) = (1− εi) (5.76)

2. The transmittance at the spacecraft angle is used instead of the transmittance at the diffusive angle

τ(θ̄i) ≈ τ(θ) (5.77)

3. The Planck function is evaluated at the surface temperature

Bi(T (peff)) ≈ Bi(T (ps)) (5.78)

4. All the effects of these approximations are reflected in a new channel dependent factor, Fi, which is
determined from a fit between monochromatic calculations using Eqn. 5.67 and the following equation:

Rd(ν, θ)i � (1− ε) ·Bi(T (ps)) · τi(ps, θ) · (1− τi(ps, θ)) · Fi (5.79)

5.9.4 AIRS Down-welling Model

The down-welling transmittance can be written in terms of the up-welling transmittance and the integrals
can be written in terms of the diffusivity approximation to yield a channel averaged form of the equation
shown below. There are 3 versions within the AIRS, IASI, and CrIS UMBC modules. The version called
DOWNVER=0 was used in the AIRS RTA’s (v3, v4, v5, v6, v7, v8a, & v8b), and newer CrIS and IASI
RTA’s (v7)

RD � ρthermal(θ, θ̄i) · τ↑i (ps, θ,XL, X̂L) · Fi · π ·Bν(T (p(Li))) ·
(
1− τ↑i (ps, θ,XL, X̂L)

)
(5.80)

The correlation factor is determined empirically (via fitting to Eqn. 5.37) for the AIRS channels with the
form

FI = a1 +
a2

sec(θ)
+
(
a3 +

a4

sec(θ)

)
·Bν(T (p(Li))

+ a5 ·
(
Bν(T (p(Lbot))
Bν(T (p(Li))

)
(5.81)

and we assume
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ρthermal(n) =
1− ε(n)

π
(5.82)

An earlier approach that was abandoned (DOWNVER=1) was used with the older v3 IASI and CrIS
RTA modules.

FI = a1 · τ↑ν (ps, θ,XL, X̂L)

(τ↑ν (ps, θ,XL, X̂L))1.67
+ a2 +

a3

sec(θ)

+
(
a4 +

a5

sec(θ)

)
·Bν(T (p(Li)) (5.83)

In Fig. 5.6 the upper panel shows the RMS (black symbols) and average (red symbols) of the difference
between channel brightness temperature for monochromatic computations with and without the down-welling
radiance component. 48 profiles at 6 viewing angles were used in the full monochromatic computation(Eqn.
5.37). As seen in this figure the down-welling term is rather small, compared to the other terms and to
the instrumental noise (≈ 0.2 K). In the lower panel the error introduced with the channel averaged fitting
approach is shown. This error is small for most channels, compared to the instrumental noise; however, it is
a significant source of error for the radiative transfer model for AIRS.

Figure 5.6: Down-welling term in the UMBC model (DOWNVER=1)

An upgrade made in May 2005 improved the downwelling calculation by a factor of three.

RD � ρthermal(θ, θ̄i) · τ↑i (ps, θ,XL, X̂L) · Fi · π ·R↓ (5.84)

R↓ ≡
Lbot∑
L=1

Bν(T (p(L))) ·
[
1− τi(p(L)→ p(L− 1), θ,XL, X̂L)

]
· τi(p(L)→ ps, θ,XL, X̂L) (5.85)

=
Lbot∑
L=1

Bν(T (p(L))) ·
[
1−
(

τ↑i (p(L), θ,XL, X̂L)

τ↑i (p(L− 1), θ,XL, X̂L)

)]
·
(

τ↑i (ps, θ,XL, X̂L)

τ↑i (p(L), θ,XL, X̂L)

)
(5.86)
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and note that τ↑i (p(0), θ,XL, X̂L) ≡ 1 (needed for L=1 calculation) and the summation can be terminated
when τ↑i (p(L), θ,XL, X̂L) ≤ 0.001.

FI = a1 +
a2

sec(θ)
+ a3 · τ↑i (ps, θ,XL, X̂L) + a4 ·

(
τ↑i (ps, θ,XL, X̂L)

)2

+ a5 ·
(
τ↑i (ps, θ,XL, X̂L)

sec(θ)

)
+ a6 ·

(
τ↑i (ps, θ,XL, X̂L)

R↓

)
(5.87)

5.10 Channel Averaged Transmittances

To compute radiances measured by an instrument, Rn(X), we must integrate the monochromatic “forward”
computation (using Eqns. 5.10-5.35) with the instrumental channel spectral response function (CSRF) for
channel n, Φ(ν, ν0(n)), which has an effective frequency ν0(n) and is defined as follows

Rn(X) =
∫
ν

Φ(ν, ν0(n)) ·R(ν, θ,X) (5.88)

5.10.1 AIRS Channel Response Function

The measured AIRS channel response function is represented by an empirical function with four parameters
(an, bn, cn, dn)

Φn(ν) = exp(−an · (ν − νn)2)
+ bn ·

(
1.0− exp(−an · (ν − νn)2)

) · [dn + |(ν − νn)|]cn (5.89)

In Fig. 5.8 the monochromatic radiance for a region of the 15 µm CO2 band along with a AIRS CSRF
(solid line) and the CSRF for the two adjacent channels is shown. AIRS is Nyquist sampled with a channel
spacing, ∆ν, approximately equal to 1

2 of the full width half maximum (FWHM) of the CSRF.

5.10.2 Co-adding two Gaussian Channels

Assume we are going to add 3 channels into a new combined channel, Rc, as follows

Rc
i =

1
2
·Ri +

1
2
·Ri+1 (5.90)

A channel is defined by its channel spectral response function (CSRF), which we will write as Φ(i, ν), which
can have specific parameters for each channel i. For example, the centroid, ν0(i), needs to be specified for
each channel as well as the FWHM of the channel, FWHM(i). In more complex models there may be more
parameters.
If we apply the convolution with the channel response function, Φ(ν), then the combined radiance can be
written as

Rc(i) =
1
2

∫
R(ν)Φ(i, ν)dν +

1
2

∫
R(ν)Φ(i+ 1, ν)dν (5.91)

=
1
2

∫
R(ν) · [Φ(i, ν) + Φ(i+ 1, ν)] dν (5.92)
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Figure 5.7: Example of channel response functions for an AIRS channel at 720 cm−1 and a pure Gaussian
and a trapezoidal function are shown for comparison.

For example, a Gaussian channel response function is given by

Φ(i, ν) = EXP
(
bi (ν − νi)

2
)

(5.93)

where,

bi =
4 loge(0.5)

(FWHM(i))2
(5.94)

where for AIRS the full-width-half-maximum, FWHM(i), is given approximately by ν0(i)/1200

Φ(ν) =
1
2
·
[
e−bi·(ν−νi)

2
+ e−bi+1·(ν−νi+1)

2
]

(5.95)

To simplify the problem we can assume for an analytical solution that the channels are Nyquist sampled
(channel spacing, δν, is 1/2 of the FWHM) then

νi = ν0 − δν

2
= ν0 − FWHMi

4
(5.96)

νi+1 = ν0 +
δν

2
= ν0 +

FWHMi+1

4
(5.97)

If we assume that the FWHM’s are all equal, that is,

FWHM ≡ FWHMi = FWHMi+1 and (5.98)
b ≡ bi+1 = bi (5.99)

Then the channel response functions are all identical in shape but displaced in frequency by 1/2 the channel
spacing which is 1/4 of the FWHM for Nyquist sampled points
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Figure 5.8: Comparison of AIRS Monochromatic Radiance and channel radiance

(ν − νi)
2 = (ν − ν0 + FWHM/4)2 = (ν − ν0)2 +

(
FWHM

4

)2

+
1
2
· FWHM · (ν − ν0) (5.100)

(ν − νi+1)
2 = (ν − ν0 − FWHM/4)2 = (ν − ν0)2 +

(
FWHM

4

)2

− 1
2
· FWHM · (ν − ν0) (5.101)

Φ(ν) =
1
2
· e−b·(ν−ν0)

2 · e−b·(FWHM/4)2 ·
[
e−b·(ν−ν0)·FWHM/2 + e−b·(ν−ν0)·FWHM/2

]
(5.102)

COSH(x) ≡ 1
2
· [e+x + e−x

]
(5.103)

which yields

Φ(ν) = e−b·(FWHM/4)2 · e−b·(ν−ν0)
2 · COSH [b · (ν − ν0) · FWHM/2] (5.104)

substitution of the definition of b (Eqn. 5.94) yields

Φ(ν) = (0.5)
1
4 · e−b·(ν−ν0)

2 · COSH
[
2 · loge(0.5) ·

(
ν − ν0
FWHM

)]
(5.105)

Therefore, the amplitude of the resulting Gaussian is smaller by a factor of

(0.5)
1
4 = 0.840896 =

1
1.18921

(5.106)

and the COSH function broadens the FWHM by a factor of 20.59835%
In Fig. 5.9 we show the form of the COSH function on a Gaussian AIRS channel. Top panel shows an

AIRS channel centered on the mid-point of the pseudo channel location. The COSH() function is shown in
the middle panel and the product of these two functions is shown in the bottom panel.
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Table 5.2: Combined channel response function resulting from adding two identical channels
x = (ν − ν0)/FWHM and a = 2 loge(0.5)

x COSH(a · x) EXP(2a · x2) COSH(a · x)·EXP(2a · x2)
0.000 1.0000 1.00000 1.00000
0.125 1.0151 0.95759 0.97201
0.250 1.0607 0.84085 0.89187
0.375 1.1382 0.67719 0.77075
0.500 1.2500 0.50003 0.62502
0.603 1.3701 0.36499 0.50008
0.625 1.3994 0.33856 0.47380
0.750 1.5910 0.21021 0.33444
0.875 1.8305 0.11968 0.21907
1.000 2.1249 0.06251 0.13284
1.250 2.9168 0.01314 0.03832
1.500 4.0627 0.00195 0.00793
1.750 5.7009 0.00021 0.00117
2.000 8.0315 0.00002 0.00012

In Figure 5.10 is an illustration of the addition of two AIRS channels. The channel response functions
of the channels to be added are shown in the top panel. In the bottom panel a number of functions are
shown. The solid line shows a simple Gaussian with the new FWHM. The dashed line shows the numerical
addition of the two functions shown in the top panel with the scaling coefficient shown. The dotted line is the
theoretical equation and the narrower dashed-dotted line is the width of an original AIRS channel centered
at the new location.

The signal-to-noise of the new channel can be computed from the new signal and new noise. The noise
is
√

2 higher and the signal is proportional to the area under the new Gaussian which is equal to the new
FWHM times the new amplitude.
The area under a Gaussian CSRF is given by

σ =

+∞∫
−∞

A · e−a2·x2
∂x =

A

a
· √π CRC 663 (5.107)

where

a =
2
√− loge(0.5)

FWHM
(5.108)

so that the area is written as

σ = A · FWHM ·
√
π

2
√− loge(0.5)

= 1.0644670 ·A · FWHM (5.109)

The ratio of the new FWHM to the old FWHM is 1.2062. The amplitude is 0.840896 less than the
original Gaussian amplitudes so that the area under the new function is equal to the area under the original
functions. The noise is reduced by a factor of

√
2 by adding these channels so that the signal-to-noise gain

by adding these channels is simply equal to
√

2.

5.10.3 Co-adding three Gaussian Channels

assume we are going to add 3 channels into a new combined channel, Rc, as follows

Rc(i) = (1− 2a) ·R(i) + a · (Ri−1 +Ri+1) (5.110)
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Figure 5.9: Example of the addition of two Gaussian CSRF’s

If we apply the convolution with the channel response function, Φ(ν), then the combined radiance can be
written as

Rc(i) = (1− 2a)
∫
R(ν)Φ(i, ν)dν + a

(∫
R(ν)Φ(i− 1, ν)dν +

∫
R(ν)Φ(i+ 1, ν)dν

)
(5.111)

=
∫
R(ν) · [(1− 2a)Φ(i, ν) + a (Φ(i− 1, ν) + Φ(i+ 1, ν))] dν (5.112)

Φc(i, ν) = (1− 2a)Φ(i, ν) + a [Φ(i− 1, ν) + Φ(i+ 1, ν)] (5.113)

The new channel response function can be given by

Rc(i) =
∫
R(ν) · Φc(i, ν)dν (5.114)

Therefore, Φc(i) is constructed by adding the three channel response functions.
See Chapter 12, Section 3 of airsb code.pdf for details on the file formats for the coefficients used in the

AMSU, HSB, MHS, ATMS and MSU files.

To simplify the problem we can assume for an analytical solution that

νi+1 = ν0(i) + δν (5.115)

νi−1 = ν0(i)− δν (5.116)

In addition, assume that the FWHM’s are all equal, that is,
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Figure 5.10: Example of the CSRF derived from co-adding two AIRS channels

bi = bi−1 = bi+1 (5.117)

Then the channel response functions are all identical in shape but displaced in frequency.

Φ(i− 1, ν) = Φ(i, ν + δν) = EXP
(
b · (ν − ν0(i) + δν)2

)
(5.118)

Φ(i+ 1, ν) = Φ(i, ν − δν) = EXP
(
b · (ν − ν0(i)− δν)2

)
(5.119)

and we can add these analytically to obtain the combined channel response function

Φc(ν) = (1− 2a) · Φ(i, ν) + a · [Φ(i, ν + δν) + Φ(i, ν − δν)] (5.120)

Φc(ν) = EXP
(
bi (ν − ν0(i))2

)
· [(1− 2a) + 2a · EXP

(
b · δν2

) · COSH (−2b · δν · (ν − ν0(i)))
]

(5.121)

substituting the definition for b (Eqn. 5.94) into the equation yields

Φc(ν) = EXP
(
bi (ν − ν0(i))2

)
·
[
(1− 2a) + a · COSH

(
4 · loge(0.5) ·

(
ν − ν0(i)
FWHM

)
)
)]

(5.122)

= Φ(ν) ·
[
(1− 2a) + a · COSH

(
4 · loge(0.5) ·

(
ν − ν0(i)
FWHM

)
)
)]

(5.123)

= Φ(ν) ·Ac(ν) (5.124)

At ν = ν0, Ac(ν = ν0) = 1− a. If we rewrite Eqn. 5.113 in terms of amplitudes of the 3 functions

Φc(i, ν) = A1 · Φ(ν + δν) + A2Φ(ν) + A3Φ(ν − δν) (5.125)
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where A1 = a, A2 = 1 − 2a, and A3 = a. A useful gauge of the amplitude of the new response function is
the ratio of the new response function at ν = ν0 to the original CSRF amplitude of the center channel as

Ac

A2
=

1− a
1− 2a

(5.126)

If the ratio of adjacent channels to the center channel is used as a parameter, h ≡ a/(1− 2a), instead of
a then Eqn. 5.122 can be written (note that (1− 2a) ≡ 1/(1 + 2h) and a ≡ h/(1 + 2h) so that) as follows:

Φc(ν) =
1

(1 + 2h)
· EXP

(
bi (ν − ν0(i))2

)
·
[
1 + h · COSH

(
4 · loge(0.5) ·

(
ν − ν0(i)
FWHM

)
)
)]

(5.127)

which is normalized (i.e., Φ(ν = ν0) ≡ 1) by dividing by (1 − a) ≡ (1 + h)/(1 + 2h) so that the equation
becomes

Φc(ν) =
1

(1 + h)
· EXP

(
bi (ν − ν0(i))2

)
·
[
1 + h · COSH

(
4 · loge(0.5) ·

(
ν − ν0(i)
FWHM

)
)
)]

(5.128)

The noise amplification of this pseudo channel is given by

NA =
√

1 + 2 · h2

1 + 2 · h (5.129)

=
√

(1− 2 · a)2 + a2 + a2 (5.130)

=
√

1− 4 · a+ 6 · a2 (5.131)

Figure 5.11: Example of the CSRF derived from co-adding three Gaussian CSRF’s with relative weighting
of 1

2 : 1 : 1
2
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Table 5.3: Characteristic of channel response functions when three identical channels are co-added
Ac/ FWHMc/

A1 A2 A3 a A2 NA FWHM2

1 1 1 1
3 2 1√

3
= 0.577 1.56036

1
2 1 1

2
1
4

3
2

√
6/4 = 0.612 1.35369

1
3 1 1

3
1
5

4
3

√
11/5 = 0.663 1.25147

1
4 1 1

4
1
6

5
4

1√
2

= 0.707 1.19359

5.10.4 Interferometer Channel Spectral Response Functions

For interferometers the channel response function is determined by the optical path delay (OPD) of the
instrument and the apodization function applied in processing. The functions can range from a sinc function,
sin(ν−ν0

ν−ν0
, to a function that approximates a Gaussian function with small oscillating side lobes. This is the

topic of Chapter 12 in the PHYS 640 notes.
Note: Apodization DOES NOT Affect Information Content

Figure 5.12: Example interferogram for the US Standard Atmosphere

The degree of apodization is shown in Fig. 5.13 as a trade-off between the size of the largest side-lobe
and spectral resolution, as given by the ratio of the full width half maximum (FWHM) of the central lobe to
the FWHM of the sinc function, FWHMU .

The degree of apodization can also be thought of as a trade-off between the fraction of signal within the
central lobe, represented as a fraction of the total area within the channel spectral response function, and
spectral resolution, as given by the ratio of the full width half maximum (FWHM) of the central lobe to the
FWHM of the sinc function, FWHMU . This trade-off curve is shown in Fig. 5.14
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Figure 5.13: Apodization trade-off between side-lobes and spectral resolution

Figure 5.14: Apodization trade-off between the area in the central lobe and spectral resolution



Chapter 5: Radiation Transfer Chris Barnet August 30, 2006 159

5.10.5 Microwave (AMSU, HSB, MHS, ATMS)

A channel averaged quantity is defined as the average of that quantity weighted by the channel response
function, Φn(ν), for channel n. For AMSU channels these are currently sets of trapezoidal integrations (e.g.,
see Table 25.7 and Section 4.2). A channel averaged transmittance is given by

τn ≡

∫
ν

τν · Φn(ν) · dν∫
ν

Φn(ν) · dν (5.132)

We can simplify the radiative transfer equations by pre-computing the channel averaged transmittances.
In future sections it will be seen that the channel averaged radiative transfer equations are integrals over many
spectral quantities; for example, spectral surface emissivity and spectral transmittance. In this example, the
channel averaged equation will be written as∫

ν

τν · εν · Φn(ν) · dν∫
ν

Φn(ν) · dν � τn · εn· (5.133)

where εn is also a channel averaged quantity

εn ≡

∫
ν

εν · Φn(ν) · dν∫
ν

Φn(ν) · dν (5.134)

If the spectral structure of the individual functions being integrated are not correlated then the channel aver-
aged radiative transfer equations have the same form, and are as accurate, as the monochromatic equations.

To save enormous amounts of computation time, τn is pre-computed and fit to a rapid transmittance
algorithm (RTA) which are a set of coefficients and/or partial computations to assist in the rapid computation
of the integrated transmittance for multiple gases. In the case of the MIT RTA, the assumption is made that
the individual absorbers (O2, H2O vapor, N2, , H2O liquid) are separable. This assumption is very good in
the microwave regions where spectral lines are not overlapping.

5.10.6 Trade-off: Spectral Resolution and Noise

There is an instrumental trade-off between Φν(ν, ν0) and NE∆T. The narrow a spectral response function
the less signal that is acquired and, therefore, the large the noise. In interferometers, this is related to the
sampling and the maximum optical path difference (OPD) of the interferometer. This trade-off is discussed in
detail in Section 24.1.2 where the noise is computed for a specific design of an interferometer. The instrument
noise is found to be (Eqn. 24.20 from Section 24.1.2)

NE∆N =
2 · L√
tint
·
√
A′

d

D∗ ·
1

AΩ · ηm · τt mW · ster−1 · cm−2/cm−1 (5.135)

The noise at the detector has the following sensitivity

• proportional to the optical path difference, L, which arises because the noise is inversely proportional
to the frequency sample interval, ∆ν = 1/(2 · L),

• inversely proportional to the square root of the total integration time

• proportional to the square root of the effective detector area,
√
A′

d

• proportional to the square root of photon flux, 1/D∗
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• inversely proportional to the entrance aperture and solid angle product, item inversely proportional
to the total transmittance of the instrument, ηm · τt. The modulation efficiency, ηm, has a maximum
value equal to

ηm = 4 · τBS · ρBS = 2 · τ9 · τ13 (5.136)

Other factors, such as misalignment, optical aberrations, mirror surface defects and contamination can
cause ηm to be smaller, which makes the signal smaller and the noise larger.

5.11 Examples of Fast Channel Averaged Models

As emphasized by Eyre and Woolf (1998), “to be useful, a satisfactory model must be both fast and accurate; it
should not introduce errors which contribute appreciably to the errors in the retrieval process” (p.3244). There
is an increasing tendency to use “physical” retrieval methods, which involve radiative transfer computations
for each retrieval, in the field of atmospheric remote sensing which makes it possible to represent the nonlinear
physics of the problem in the data interpretation. The radiative transfer models must be computationally
efficient and accurate line-by-line models are generally too slow for these applications, resulting in the need
for something faster, yet still maintains good accuracy (Eyre & Woolf, 1988). In an article by Rosenkranz
(1995), he discusses a rapid transmittance algorithm devised for NOAA’s AMSU-A and AMSU-B (similar
to HSB) instruments which appears to meet both of these requirements. He states “in tests, the rapid
algorithm required thirty times less computation than a line-by-line algorithm, and reproduced the line-by-line
calculation of brightness temperatures with accuracy comparable to or better than the channel sensitivities”
(Rosenkranz, 1995, p. 1135).

5.11.1 Microwave RTA

A summary of the MIT rapid transmittance algorithm (Rosenkranz, 1995) is given here. This is the RTA used
in the AIRS/AMSU operational code. See also Eyre and Woolf (1988) for another RTA for the microwave.

In general, the MIT RTA computes three opacity parameters, α, β, andγ for fixed, water, and liquid
water. The layer transmittance is given by

τ↑(L) = exp(−(α(L) + β(L) · CW + γ(L) · CL)) (5.137)

where, CW is the water layer column density in gm/cm2 and CL is the liquid layer column density in gm/cm2

For oxygen channels the oxygen and nitrogen optical depths are computed at every layer

α(L) = − loge(∆τO2(L) · τN2(L))/ sec(θ) (5.138)

transmittance was computed at P (L), T (L), q(L) for L = 1, 100 layers. For water vapor channels, the optical
depth is parameterized in terms of line, foreign, and self absorption

β(L) = (βL + βs(T ) · pdry + βf (T ) · pH2O) · sec(θ) (5.139)

where, the line component is given by

βL =
S(T ) · w
N · π

N∑
i=1

(
ν

νL

)2

[
(νi − νL)2 + w2

] (5.140)

and βf (T ) is the foreign broadened component, per gm/cm2 per mb partial pressure and βs(T ) is the self
broadened component, per gm/cm2 per mb partial pressure and w is given by
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w = wf (T ) · pdry + ws(T ) · pH2O (5.141)

where, functions of T are found by interpolation of T = 173 + 6 · i for i = 1, 25

γ(i) = γ0 · sec(θ) = κLIQ(10, f, T ) · sec(θ) (5.142)

5.11.2 PFAAST

Figure 5.15: Snapshot of Larrabee Strow, 2004

This fast transmittance model is based on methods developed and used by Larry McMillan, Joel Susskind,
and others. An introduction to the theoretical development of the approximations employed can be found
in: McMillin and Fleming (1976), McMillin et al. 1995b, Hannon et al. 1996, Strow et al. 1998, and Strow
et al. 1998.

a. Select the Regression Profiles:

48 regression profiles were chosen that cover the realistic range of profile variability. Each profile consists
of temperature and gas amounts of 4 variable gases: water, ozone, carbon monoxide, and methane. All
other gases are ”fixed” (do not vary in amount with profile).

b. Calculate Monochromatic Transmittances:

Monochromatic layer-to-space transmittances for the regression profiles are computed. This was done
using our KCARTA package. The layer-to-space transmittances are grouped into sets of ”mixed” gases.
For this production, there were 4 different ways in which the gases were grouped, depending upon the
frequency region:
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FOW : 3 groups of transmittances: F, FO, FOW

FOWp : 4 groups of transmittances: F, FO, FOW, FOWp

FMW : 3 groups of transmittances: F, FM, FMW

FCOWp: 5 groups of transmittances: F, FC, FCO, FCOW, FCOWp

where F refers to ”fixed” gases, W to water, O to ozone, C to carbon monoxide, and M to methane.
The ”p” refers to perturbed CO2, in which the CO2 amount has been increased by +5”FM” refers to
the transmittance of the ”fixed” gases and methane together.

For channels under 1620 cm-1, 6 angles were computed with the secant angles equal to 1.00 1.19 1.41
1.68 1.99 2.37. For the shortwave channels 6 additional angles were added to extend out to the larger
angles need for the for reflected solar radiance: 2.84 3.47 4.30 5.42 6.94 9.02

c. Convolve the Transmittances:

The monochromatic transmittances are convolved with the appropriate Spectral Response Functions
(SRF). For this production run, there was a separate SRF for each of the AIRS channels. The SRFs
are based upon laboratory measurements of the SRFs. In particular, we used interpolations of mea-
surements for test 261, with the wings added on using a model. The channels in module 11 which are
based on test 266 due to noise problems with test 261 for that module.

d. Calculate Effective Layer Transmittances:

For each layer, the convolved layer-to-space transmittances are ratio-ed with transmittances in the layer
above to form effective layer transmittances for fixed, water, ozone, CO, methane, and perturbed CO2
are:

For FOW:
Feff(L) = F(L)/F(L-1)
Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )
Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )

For FOWp:
Feff(L) = F(L)/F(L-1)
Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )
Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )
peff(L) = ( FOWp(L)/FOW(L) )/( FOWp(L-1)/FOW(L-1) )

For FMW:
Feff(L) = F(L)/F(L-1)
Meff(L) = ( FM(L)/F(L) )/( FM(L-1)/F(L-1) )
Weff(L) = ( FMW(L)/FM(L) )/( FMW(L-1)/FM(L-1) )

For FCOWp:
Feff(L) = F(L)/F(L-1)
Ceff(L) = ( FC(L)/F(L) )/( FC(L-1)/F(L-1) )
Oeff(L) = ( FCO(L)/FC(L) )/( FCO(L-1)/FC(L-1) )
Weff(L) = ( FCOW(L)/FCO(L) )/( FCOW(L-1)/FCO(L-1) )
peff(L) = ( FCOWp(L)/FCOW(L) )/( FCOWp(L-1)/FCOW(L-1) )

The zeroeth layer transmittance (ie when L-1=0) is taken to be exactly 1.0.

e. Regress the Effective Layer Transmittances and Predictors:

The effective layer transmittances are converted to optical depth (by taking the negative of the logarithm
), and then weighted according to some estimated relative importance. A regression is done on this
data with a set of profile dependent predictors (see note below) as the independent variables. The
regression, which is of the form A*X=B, where A is a matrix of predictors and B is the data, calculates
X, the fast transmittance coefficients.
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Note: The predictors are generally various combinations of the main profile variables such as the
temperature and gas amount, as well as the satellite viewing angle. One of the most time consuming
and tiring aspects in developing a fast model using this method is in selecting/inventing the optimum
set of predictors. It is essentially a trial and error exercise; try somthing and see how it works.

The fast transmittance coefficients may be used to quickly compute effective layer transmittances for
almost any desired profile simply by calculating the appropriate predictor values for the profile and
multiplying them by the coefficients. The individual component gases (”fixed”, water, ozone, CO,
methane, and the far-wing water continuum) are calculated separately. The total layer transmittance
is the product of the individual component transmittances.

An example of the predictors used for computation of layer optical depth is given below. The are seven
modules for AIRS, IASI, and CrIS RTA’s. Each model computes layer optical depths for water continuum,
C, fixed gases, F, water, W, ozone, O, carbon monoxide, CO, methane, CH4.

See Chapter 12, Section 11 for details on how the coefficients are organized and the specific details on
the file formats.

5.11.3 OPTRAN

Figure 5.16: Larry McMillin with his family (courtesy of Larry McMillin)

Different from PFAAST that predicts the optical depth, the Optical Path TRANsmittance (OPTRAN)
model is a fast transmittance model that predicts the absorption coefficient via regression for each absorbing
species on the absorber path for that species. This approach was chosen because the dependence of absorption
coefficients with the integrated absorber amounts is resolved while the atmosphere is discretized in terms
of integrated absorber amounts and the absorption coefficients are fitted in these discretized layers. The
advantages of performing regression on absorber levels rather than pressure levels are fourfold:

1. pressure is available for use as a predictor,
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2. zenith angle is implicitly included in the absorber profile and no longer needs to be treated explicitly,

3. simple predictors are used because they are not explicit functions of the absorber amounts, and

4. an arbitrary input pressure profile is permitted, so interpolation to specific pressure levels is not required.

Another important characteristics of OPTRAN is that use of weight is not necessary in the regression.
The improvements made after McMillin et al. 1995b at OPTRAN-V6 has been summarized by Kleespies

et al. 2004. Only a subset of 5 predictors out of a total of 15 possible predictors are used in OPTRAN for
each channel and absorber. Experiments have shown that more than five predictors add little improvement
to the results. The predictor subset is pre-computed and permitted to vary with each absorbing species, and
with each channel of each instrument. The total predictor set is listed and each described in Table 5.4. The
optimal set of predictors for each channel and species is determined by finding the set of five out of fifteen
that minimizes the computed brightness temperature difference between the OPTRAN transmittances and
the LBL transmittances. There are 3003 combinations for a subset of five predictors taken out of a set of
15. The optimal set of five predictors is determined by exhaustive combinatorial search. For simplicity,
surface emissivity can be set to unity for these calculations. In Table 5.4 the absorber weighted temperature
is defined as

T ∗i
m =

i

ui
m

m∑
j=1

ui−1
j · Tj ·∆uj for the mth level and i = 1, 2, 3 (5.143)

similarly for P ∗i, where ∆uj is the layer absorber amount, and u is the absorber amount from the top of the
atmosphere to the level. ∗i refers to the number of asterisks, with i = 1, 2 or 3.

In OPTRAN it is necessary to define a standard set of absorber amounts at which the regression is done.
The number of absorber levels for each absorbing species specified is 300, and the absorber amount in each
layer is defined as an exponentially increasing sequence (McMillan et al. 1995), i.e., ∆Ai+1 = ∆Ai exp(α),
for i = 1, 2, . . ., 300, and α is a constant. The lower bound of the absorber space was decreased to the
minimum ∆Ai for all the regression profiles, and the upper bound is the maximum integrated amounts of
all the regression profiles times the secant of the maximum instrument viewing angles. In order to provide
sufficient data points to allow for accurate regression in the last few layers, usually one angle less is used.

The most recent improvement of OPTRAN by Xiong and McMillin (2004) is the introduction of a
correction term in the model. Because the channel transmittances are not monochromatic, the product of
the polychromatic transmittances of the individual components is not strictly equal to the total transmittance.
Therefore in the past, the practice has been to set one gas, for example dry, as one independent component,
and to define the components for water vapor and ozone as the total channel transmittance divided by the
transmittance of dry plus another one or two variable gases as follows:

τd+o+w = τd ·
(
τd+o

τd

)(
τd+o+w

τd+o

)
= τd · τ∗o · τ∗w (5.144)

where τd is the transmittance of dry gases from the top of atmosphere to a layer, τd+o contains the effects
of the dry gases and of ozone, and τd+w+o contains the effects of all gases. τ∗w and τ∗o are called effective
water vapor and effective ozone transmittances respectively, and, as can be seen from the previous equation,
are defined as:

τ∗o ≡ τd+o

τd

τ∗w ≡ τd+o+w

τd+o
(5.145)

The rapid models require line-by-line transmittances from a set of representative profiles to calculate
coefficients for the rapid calculations. For each atmospheric profile a line-by-line (LBL) model is used to
compute τd, τd+o, and τd+w+o. While this is the definition used by McMillin et al. 1995, there can be other
definitions of effective transmittances for different wavelength regions in which the water vapor or ozone can
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be chosen as the independent component. The best results are obtained when the gas used in the denominator
is the most transparent one, but this selection changes with channel. This means that the best results are
obtained when the definitions of the effective gases change are optimized for each channel. A disadvantage
of not making the selection channel dependent is that when the layer-to-space transmittance of dry (τd) or
dry plus ozone (τd+o) is equal to zero, the values of τ∗w and τ∗o in Eqn. 5.145 become indeterminate at that
layer and all successive layers below. As expected, different choices of the independent component and the
sequences to define the effective transmittances lead to different results. If the selection is made channel
dependent, there is a need to calculate the transmittance by LBL models for all or most of the combinations
of the individual gases. If we include more than three gases, or make the definition of effective transmittance
wavelength dependent, even more of the possible combinations of gases need to be calculated from line-by-line
models. For example, there are 7 combinations for 3 gases, but 15 for 4. These additional and expensive
calculations by LBL models are not necessary in our new approach. To avoid the numerical problems and to
reduce the LBL computational burden, a correction term is introduced to account for the difference between
the product of the transmittances of the three individual gases (dry, water vapor, and ozone) from the total
transmittance, defined as follows:

τc =
τd+w+o

τd · τw · τo (5.146)

With this definition the predicted total transmittance in this new approach will be computed as the
product of the predicted component transmittances of dry, water vapor (water line absorption and water
continuum are fitted separately), ozone, and the predicted correction term. To simplify the coding, the
correction term as a ”transmittance” and then fitting the corresponding absorption coefficients on the absorber
space. When one gas is the predominate absorber, the choice of the absorber space is obvious. When two
or more gases have roughly equal strengths, the correction has to resolve both gases adequately. This can
most easily be done by creating two or three corrections, one based on the absorber amount for the first gas
and one based on the absorber amount for the next one. However, in practice it is found that use of one
correction using the absorber space of water vapor is enough to get the same accuracy as other models for
HIRS and AIRS.

The use of the correction term solves some numerical problems that were associated with the use of
effective transmittances, greatly reduces the line-by-line computational burden, and allows for the efficient
inclusion of more gases. This correction method can easily be applied to any other fast models that use the
effective transmittance approach. Some other improvements in OPTRAN have also been made. For example,
several more possible predictors have been introduced. These are P

1
2 and T/P for dry gases, P

1
4 and P

∗1
4

for ozone, and three new predictors P
1
2 , Q

1
2 and q/T 2 for water vapor. Considering the maximum of ozone

layers is in the stratosphere, the prior definition of absorber space is not appropriate for ozone. The ozone
absorber space is now set to increase linearly in the first 160 layers, and to be a constant from layer 161 to
300 for the layer amount ∆Ai.

Both 32 profiles and 48 profiles were used to training the coefficients of OPTRAN. The 117 ECMWF
profiles are chosen as an independent profile set to validate OPTRAN with coefficients derived from either
the 32- or the 48-profile set. The RMS errors for all 19 HIRS channels are less than 0.1 K, and for some HIRS
channels the RMS errors when using the correction term are less than that using the effective transmittances.
The accuracy of OPTRAN for AIRS is comparable or even slightly better than PFAAST in many channels.

Usually, the OPTRAN model is implemented as follows:

1. Given an input profile on a set of pressure layers with data for (gas absorber amounts and temperature,
the predictors are first (computed on the pressure level grid, and then these predictors were (interpolated
from pressure levels to absorber levels. Linear (interpolation is used.

2. The absorption coefficient for each gas is (computed on the absorber levels, and then interpolated back
to (pressure levels for calculation of the transmittance.

A computationally more efficient method is to interpolate the regression coefficients from the absorber
levels to the pressure levels and then computes the absorption coefficient and transmittance. This procedure
has been implemented with a speed improvement of about 12%. However, this method is not as accurate as
the two-interpolation method for opaque temperature channels.
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Table 5.4: Predictors used in OPTRAN
Predictor
Number Quantity Description

1 T Temperature at a level of absorber amount
2 P Pressure at level of absorber amount
3 T 2 Temperature squared
4 P 2 Pressure squared
5 T · P Product of 1 and 2
6 T 2 · P Product of 3 and 2
7 T · P 2 Product of 1 and 4
8 T 2 · P 2 Product of 3 and 4
9 T ∗1 absorber weighted temperature (see Eqn. 5.143)
10 P ∗1 absorber weighted pressure (see Eqn. 5.143)
11 T ∗2 absorber weighted temperature (see Eqn. 5.143)
12 P ∗2 absorber weighted pressure (see Eqn. 5.143)
13 T ∗3 absorber weighted temperature (see Eqn. 5.143)
14 P ∗3 absorber weighted pressure (see Eqn. 5.143)
15 q water vapor volume mixing ratio

5.11.4 OSS

The optimal spectral sampling method was developed at AER in support of the NPOESS CrIS instrument.
The channel averaged radiance

R(ν) =

∫
∆ν

φ(ν − ν′) ·R(ν′) · dν′∫
∆ν

φ(ν − ν′) · dν′ �
N∑

i=1

wi ·R(νi) + error (5.147)

Usually ≈ 5 monochromatic points per channel are required to fit the radiances within ± 0.1 K. The
weights, wi, are all constrained to be positive and the sum is constrained to be close to unity,

∑
wi � 1. The

locations of the monochromatic calculations, νi, are chosen to best match the properly computed channel
averaged radiance to within a noise specification. Therefore, for each channel, a set of frequencies are defined
with associated accuracies.

The channel averaged transmittance is given as a weighted mean of monochromatic channel transmit-
tances for fixed gases, water, ozone, methane, and carbon monoxide.

τk(ν) =
N∑

i=1

wi · e−κk(νi)/cos(θ) (5.148)

This method is a combination of exponential sum fitting (ESFT) (Wiscombe and Evans, 1977) and cor-
related k-distribution methods. The weights can be interpreted as a probability distribution of the absorption
coefficient over the spectral interval of the channel response function.

Notice that since the transmittances and radiances are monochromatic, the computation of derivatives
can be done analytically.

5.12 Example Infrared Radiances

AIRS radiances, with a spectral resolution of ∆ν = ν/1200, were computed from the three profiles shown in
the next figure. They are taken over mid-latitudes (black), tropical (red) and polar (green). Notice the large
variation in moisture from 0.12 g/cm2 in Antarctica to 4.6 g/cm2 for the tropical case.

The IRIS spectrometer on the Voyager spacecrafts (see Section 25.3 made the first infrared measurements
of the outer planets. The apodized resolution, ∆ν, is 4.5 cm−1.
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Figure 5.17: Example temperature, moisture, and ozone profiles

Figure 5.18: AIRS radiance computation for the profiles given in the previous figure
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Figure 5.19: Example of planetary spectra obtain with the IRIS instrument (Hanel, 1983)
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5.13 Example Microwave Radiances

The radiances shown in the following figures are generated by

Figure 5.20: The US Standard atmosphere profiles used for the following figures

The skin temperature, Ts, temperature profile, T (p) and moisture q(p) in g/M3 for the US Standard
Atmosphere (1976) is shown in Fig. 5.20. The saturation moisture, ρs(T ), is also shown as a dashed line.
The nominal moisture case is shown as a solid line and the water vapor burden for this atmosphere is 16.6
kg/M3. The 1% statistical low and high value of moisture is shown as dotted lines with 0.15 kg/M3 and
145.6 kg/M3, respectively.

In Fig. 5.21 the microwave brightness temperature computed with the US Standard Atmosphere, the
land spectral emissivity ε(f = 50) = 0.95 shown as a dotted line, and nadir observation angle (θ = 0). The
total monochromatic brightness temperature, Θ, at the top of the atmosphere is shown as a solid line. Plus
(“+”) symbols show the AMSU channel averaged values.

The surface component, as seen at the surface, ε(f)·Ts, is shown as a dotted line. The surface component
at the top of atmosphere, Θs, is shown as a dashed curve. The ratio between the dotted and dashed curves,
Θs/(ε(f)·Ts), is equal to the total atmospheric transmittance, τ↑n(Ps). The contribution from the atmospheric
column, Θa, is shown as a thin solid line. The down-welling radiance, Θd, is small in this case and is shown
as a dashed-dot curve. The dark line is the total brightness temperature at the top of the atmosphere and is
given by Θ = Θs + Θa + Θd.

Note that the monochromatic calculation should utilize Eqn.’s 5.14, 5.33, and 5.47 while the channel
averaged equations utilize Eqn.’s 5.15, 5.34, and 5.49. For simplicity, the MIT algorithm uses the specular
equations (Eqn. 5.52 and 5.53) for these land computations.

The microwave brightness temperature, Θ, for the US Standard Atmosphere with nominal moisture (16.6
kg/M3), the ocean spectral emissivity ε(f = 50) = 0.55 model shown in Fig. 3.11, and nadir observation
angle (θ = 0). The lines have the same meaning as Fig. 5.21.

Note that the down-welling term is more significant than in the daytime case. The spectral emissivity,
εν , is a more significant function of frequency, consistent with the spectral emissivity of an ocean surface (see
Section 3.10.2).
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Figure 5.21: Example of microwave radiance components over land

Note that the monochromatic calculation utilizes Eqn.’s 5.14, 5.33, and 5.52 while the channel averaged
equations utilize Eqn.’s 5.15, 5.34, and 5.53.

In Fig. 5.23 the microwave brightness temperature, Θ, for the US Standard Atmosphere with the low
moisture (WVB = 0.15 kg/M2, statistically occurs 1% of the time) profile. The land spectral emissivity
ε(f = 50) = 0.98 model shown in Fig. 3.11 and nadir observation angle (θ = 0) are used. The lines have the
same meaning as before.

Note that the low quantity of water vapor has resulted in a low value of the water continuum absorption
and, therefore, a small contribution from the atmosphere in the continuum regions. This results in an emission
spectrum in the lower atmosphere which is seen in the wings of the O2 regions and the 183 GHz line.

In Fig. 5.24 an ocean spectral emissivity ε(f = 50) = 0.55 model was used for the polar moisture case.
In Fig. 5.25 the microwave brightness temperature, Θ, for the US Standard Atmosphere with high

moisture (WVB = 145.6 kg/M2, statistically occurs 1% of the time). The land spectral emissivity ε(f =
50) = 0.98 model and nadir observation angle (θ = 0) are used. The lines have the same meaning as before.

Note that the large quantity of water vapor has resulted in a high value of the water continuum absorption
and, therefore, a large contribution from the atmosphere in the continuum regions. The surface contribution
is almost completely gone at high frequencies.

In Fig. 5.26 the ocean spectral emissivity ε(f = 50) = 0.55 model was used with the tropical water US
standard model (WVB = 145.6 kg/M2).
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Figure 5.22: Example of microwave radiance components over ocean

Figure 5.23: Example of microwave radiance components for a polar land case
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Figure 5.24: Example of microwave radiance components for a polar ocean case

Figure 5.25: Example of microwave radiance components for a tropical land case



Chapter 5: Radiation Transfer Chris Barnet August 30, 2006 173

Figure 5.26: Example of microwave radiance components for a tropical ocean case
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Chapter 6

Simulation and Retrieval of Cloudy
Radiances in the Infrared

Finding what I wanted in those mountainous drifts of merchandise was like searching for Rosebud in Charles
Foster Kane’s basement. in a review (by Robert Sherrill, July 11,1992 Wash. Post) of a book by and about
Sam Walton, ”Made in America: My Story”.

6.1 Properties of Clouds

• θ = zenith angle

• θ� = solar zenith angle

• λ = azimuthal angle

• R� = solar radiance

• Ω� = π · 6.951·108 km
1.4957·1011 km = 6.78509 · 10−5

• R = observed radiance at top of atmosphere

• Rs = observed radiance at surface

• ρ = bidirectional reflectivity

• ρ′ = bidirectional reflectance

• zenith angle integral

π/2∫
0

cos(x) sin(x)dx =

1∫
0

µdµ =
µ2

2

∣∣∣∣
1

0

=
1
2

(6.1)

175
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6.1.1 reflectivity

from IR Handbook (Wolfe Zissis) QC457.I56

ρ =
R · Ω

R� · Ω�
(6.2)

6.1.2 bi-directional reflectivity

from Kirchoff’s law at surface, Kleespies, 1996

ε(µ) +
1
π

2π∫
0

1∫
0

ρ(µ, φ;−µ′, φ′) · µ′ · dµ′ · dφ′ = 1 (6.3)

6.1.3 bi-directional reflectance

Turk et al., 1998

ρ(θ, θ�, λ) =
π ·R
µ0 · F0

(6.4)

6.1.4 BDRF

BDRF = bi-directional reflectance distribution function
Accetta and Schumaker, 1993

f =
R

R� · Ω�
(6.5)

for Lambertian surfaces, f = ρ/π.
for specular surfaces, f = ρ · δ(θ, θ�) · δ(λ, λ�)

6.1.5 directional reflectance

6.1.6 hemispheric reflectance

6.1.7 radiant exitance

Minnis and Harrison, 1984, p.1049

M(θ�) =

2π∫
0

π/2∫
0

R(θ, θ�, λ) · cos(θ) · sin(θ) · dθ · dλ (6.6)

for a diffuse surface M(θ�) = π ·R(θ�)
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6.1.8 anisotropic correction factor

Minnis and Harrison, 1984, p.1049

χk(θ, θ�, λ) =
R(θ, θ�, λ)
R(θ�)

(6.7)

and is modeled for a surface type, k, and then used to convert measured radiance of a specific surface
type, Rk, directly to radiance exitance

M(θ�) =
π ·Rk(θ, θ�, λ)
χk(θ, θ�, λ)

(6.8)

6.2 Published Cloud Properties

6.2.1 Kleespies, J. Appl. Meteor., 1994

VAS instrument
ν0 bandpass NEDT at 300 K FOV
µm µm K km
0.65 0.55-0.75 ± 2 counts 1
3.9 3.84-4.06 0.25 16
10.7 10.4-12.1 0.1 8

Ω� ·R� =0.0151 W/M2/cm−1 at 3.9µm (Thekaekara is 0.01566).
Brightness temperature variability in 3.9 µm increases during the day from 278◦ to 295◦ while 10.7 µm

is ≈ constant at 283◦.

ρ =
∆Θ · dB/dT (3.9, 295◦)

Ω� ·R� · cos(θ)τ↓↑
=

17◦ · 0.0315
15.66 · 0.97 · 1.0 = 3.5% (6.9)

R = Ω� ·R� · cos(θ�) · τ↓↑ ·Rn(θ, θ�,∆λ, re) (6.10)

where re is the effective radius of particles, Rn is the computed reflectances. In the table below θ =
θ� = 45◦ and ∆λ = 45◦. Optical depths range from 6 to 32.

re Rn(τ = 6) Rn(τ = 32)
5.0 0.070 0.062
10.0 0.040 0.040
15.0 0.024 0.024
20.0 0.016 0.016

optical depth of the cloud is not important unless re < 6 µm and then only for thinner clouds. Reflectance
has a strong dependence on ∆λ.

6.2.2 Kleespies, Dissertation

directional emissivity, ε(µ)
bidirectional reflectivity, ρ(µ, φ;−µ′, φ′)
Kirchoff’s law at surface
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ε(µ) +
1
π

2π∫
0

1∫
0

ρ(µ, φ;−µ′, φ′) · µ′ · dµ′ · dφ′ = 1 (6.11)

for constant ρ(µ, φ;−µ′, φ′) ≡ ρ then

ε(µ) +
1
π
ρ ·

2π∫
0

1∫
0

µ′ · dµ′ · dφ′ = ε(µ) + ρ = 1 (6.12)

and ρ = 1− ε(µ)
lower boundary condition (pg. 13)

Rs = ε(µ)B(Ts) +
µ0

π
I0 · e−τs/µ0 · ρ(µ, φ;−µ′, φ′) +

1
π

2π∫
0

1∫
0

ρ(µ, φ;−µ′, φ′) · I(τs,−µ′, φ′) ·µ′ · dµ′ · dφ′ (6.13)

reflectance function of Nakajima and King (1990)

R(τc;µ, µ0, φ) =
π · I(0,−µ, φ)

µ0 · F0
(6.14)

F0 = incident solar flux density

Turk et al., 1998
bi-directional reflectance

ρ(θ, θ�, λ) =
π ·R
µ0 · F0

(6.15)

f(θ, θ�, λ) =
ρ(θ, θ�, λ)

A
(6.16)

A =
1
π

2·π∫
λ=0

π/2∫
θ′=0

ρ(θ′, θ′�, λ) cos(θ′) · sin(θ′)dθ′ · dλ (6.17)

Wan and Dozier, 1989
bi-directional

R = Rg ·R↓ + ε(µ) ·B(Ts) +
µ0 · F0

π
· e−τ/µ0 · f(µ0) (6.18)

Rg is diffuse reflectance

ε(µ) = 1−
2·π∫

λ=0

1∫
µ′=0

u′ · fdu′ · dλ (6.19)

E0 = solar irradiance
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Shaw, 1970
case.1, moist vegetation

cm−1 R (erg/sr/sec/cm−1 R�
2510 1.059 0.097
2655 0.670 0.107

Ts = 297.4, ρ′surf =1.2%, ε = 1− πρ = 0.96 θ� = 54.5◦, z=1500m, Ps = 850 mb.
case.2, altocumulus, α =97%, 300m thick, base at 3000-4000m

cm−1 R (erg/sr/sec/cm−1 R�
2510 0.596 0.209
2655 0.439 0.230

Tg = 276.4, ρ′cld =3.62%, ε = 1− πρ = 0.886 θ� = ??, Pcld = 680 mb, Tcld = 278.8.
N = Bν(T = 6000◦) · cos(θodot) · τ↓↑(θ�, θ) · ρ′ · dA

Brennan and Bandeen, 1970
bi-directional reflectance

ρ(θ, θ�, λ) =
R(θ, θ�, λ)

Ω ·R� · cos(θ�)
sr−1 (6.20)

directional reflectance

r(θ�) =

π
2∫

θ=0

2·π∫
λ=0

ρ(θ, θ�, λ) · cos(θ) · sin(θ) · dλ · dθ (6.21)

for isotropic bi-directional reflectance, then the direction reflectance is given by

r(θ�) = π · ρ(θ�) (6.22)

normalization factor

χ(θ, θ�, λ) =
r(θ�)

π · ρ(θ�)
(6.23)

6.2.3 albedo

A =

π
2∫

θ�=0

r(θ�) · cos(θ�) · dθ�
π
2∫

θ�=0

cos(θ�) · dθ�
(6.24)

NASA Convair-990 w/ MRIR instrument, 0.2-4 µm
range of

types altitude solar zenith directional
of surface (km) angle reflectance
Desoto Nat’l Forest 0.06 51.6-68.6 5.7
Farmland + Wooded Areas 0.15 11.6-13.3 4.4
Gulf of Mexico 0 29.5-35.5 1.9
Pacific Ocean 0 44.6-50.5 2.3
Strato Cumulus over Pacific 0.7 41.0-58.1 8.8, 10.5
Strato Cumulus over Pacific 1.4 61.2-79.0 15.3, 13.1
Strato Cumulus over forest 1.9 54.9-72.4 16.4
Strato Cumulus over Pacific 3.0 22.0-24.0 11.0
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6.2.4 A summary of the physical properties of cirrus clouds

(Dowling and Radke, 1990)
property typical value measured range
thickness 1.5 km 0.1 to 8 km
cloud center altitude 9 km 4 to 20 km
crystal concentration 30/liter 10−4 to 10+4 per liter
ice water content 0.025 g/M2 10−4 to 1.2 g/M2

crystal length 250 µm 1 to 8000 µm

determination of cirrus altitude via SAGE (Jan. to Nov. 1981)
latitude mean altitude (km)
65◦ N 7.0
55◦ N 8.2
45◦ N 9.5
35◦ N 9.7
25◦ N 10.9
15◦ N 13.0
5◦ N 13.3
5◦ S 13.5
15◦ S 12.0
25◦ S 10.3
35◦ S 9.6
45◦ S 8.7
55◦ S 8.2
65◦ S 7.0

6.2.5 empirical normalized bi-directional reflectance

Stuhlmann, Minnis, Smith, 1985

r(θ, θ�, λ) =
π ·R(θ�)
M�

(6.25)

M� is the solar exitance = π(?)·Ω� ·R�·(?) cos(θ)
Nimbus-7 ERB measurements, 0.2-4.8 µm

range of
types altitude solar zenith bi-directional
of surface (km) angle reflectance
cloud 3 17.5 35
cloud 3 42.5 32
cloud 3 62.5 25
cloud 3 82.5 20
cloud 9 17.5 32
cloud 9 42.5 32
cloud 9 62.5 25

IR emittance (10-12 µm) (Platt, 1979)



Chapter 6: Clouds Chris Barnet August 30, 2006 181

ε(θ) =
R(G)−R(θ)

R(G)−Bν(Tcld)
(6.26)

where R(G) is the reflected solar radiance from the ground up to the cloud base. The vertical emittance,
εr is related to the cloud transmittance, τcld which is related to the cloud optical depth, k(θ) � k(0)/ cos(θ)

εr = 1− τcld = 1− e−k(θ)·cos(θ) (6.27)

R(θ) = ε ·Bν(Tcld) + τcld ·R(G) = ε · (Bν(Tcld)−R(G)) +R(G) (6.28)

AIRS Science Team presentation Oct. 98
Upgrade to Radiative Transfer

• Improvements to solar radiance computation

– “Real” spectral solar radiance, H�(n), (read from a file)

– compute Earth-Sun distance from date and time, d�(t).

– removed factor of π in reflectivity computation

R� = ρ� ·H� · Ω(d�(t)) · cos(θ) · τ↑↓(θ, θ�, ps) (6.29)

– current simulation “truth” has Lambertian clouds and surface that is brighter than Lambertian.

Table 1: Reflectivities in AIRS Science Team Simulation
ρ� standard ρ� ρ� (1− ε)/ρ

average deviation maximum minimum average
ρcld#1 3.2% ± 0.25% 4% 2.4% 3.15
ρcld#2 3.2% ± 0.25% 4% 2.3% 3.15
ρsurf 2.3% ± 0.8% 6% 0.05% 2.5

6.2.6 from NOAA wall chart

low clouds:
up to 6500 ft
to to 2 Km
up to 800 mBar (275 K)
Sc,St,Cu,Cb (Stratocumulus,Stratus,Cumulus,Cumulonimbus)

middle clouds:
6500 ft to 23,000 ft
2 Km to 7 Km, 800 mBar to 400 mBar (240 K)
Ac,As,Ns (Altocumulus, Altostratus, Nimbostratus)

high clouds
16,500 to 45,000 ft
5 Km up to 13.75 Km
530 mBar (255 K) to 140 mBar (216 K)
Ci,Cc,Cs (Cirrus, Cirrocumulus, Cirrostratus)
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Reff Veff (Hansen, 1971)
Fair Weather cumulus 5.56 0.111
Altostratus 7.01 0.113
Stratus 11.19 0.193
Cumulus congestus 10.48 0.147
Stratocumulus 5.33 0.118
Nimbostratus 10.81 0.143

Earth is typically covered about 50%
average precipitable water is about 2.5 cm
average time aloft is 9 days (from 100 cm of rain/year)
in thunderstorm approximately 10% of water is released

suspended droplets 1 um to 100 um
cloud over continents have smaller droplets

6.2.7 Graeme Stephens, 1994

n(r) · dr =
No

Γ(α) · rn

(
r

rn

)α−1

· exp (r/rn) · dr (6.30)

where, rn is a radius that characterizes the distribution, α is the variance of the distribution, Γ is the gamma
function, and we can defined a function

F (j) = Γ(α+ j)/Γ(α) (6.31)

A =

∞∫
0

π · r2 · n(r) · dr = No · π · r2n · F (2) (6.32)

V =

∞∫
0

π · r3 · n(r) · dr =
4
3
·No · π · r3n · F (3) (6.33)

No rm rmax r+e l
Cloud type cm−3 µm µm µm gm−3

Stratus (Ocean) 50 10 15 17 0.1-0.5
Stratus (Land) 300-400 6 15 10 0.1-0.5

Fair Weather Cumulus 300-400 4 15 6.7 0.3
Maritime Cumulus 300-400 50 20 25 0.5

Cumulonimbus 70 20 100 33 2.5
Cumulus Congenstus 60 24 40-80 40 2.0

Altostratus 200-400 5 15 8 0.6
From “Remote Sensing of the Lower Atmosphere” by Graeme L. Stephens, Ozford Univ. Press, 1994,

page 23.

• No is the droplet concentration

• rm is the mean radius = (α+ 1) · rn.

• r+e Is the effective radius, defined as re = V/A = (α+3 · rn, and it assumes the size distribution of Eqn.
6.30 with α = 2

• l is the cloud liquid water content = ρl · V .



Chapter 6: Clouds Chris Barnet August 30, 2006 183

6.3 Derivation of a simple cloud model

This topic discussed in more detail in the AIRS ATBD (goto GSFC AIRS DAAC homepage), Susskind et al.
(2003), Susskind et al. (1998).

In this section we are discussing a simple model for clouds that can easily be incorporated in simulation
experiments to test cloud parameter retrieval (next section) and cloud clearing concepts (next chapter). This
model cannot be used to test cloud micro-physical models. Specifically, this chapter discusses a model that
can be used for

1. including transmissive clouds with spectral emissivity and reflectivity into the simulation of infrared
radiances,

2. test the ability of a cloud parameter retrieval to retrieve spectral cloud emissivity and cloud reflectivity,

3. testing the robustness of the cloud clearing algorithms to more complex clouds.

In Chapter 5 the equations for clear infrared channels were given. Here we will develop the equations,
including solar reflection from the clouds, for all channels and discuss the results for both retrievals and cloud
clearing.

We begin by defining cloud # 1 as the top cloud. As viewed from the spacecraft, α1 represents the
fraction of the field of view which sees the top cloud (i.e., cloud # 1). The fraction of the field view in
which cloud # 2 is directly visible is given by α2. The fraction of cloud # 2 underneath cloud # 1 along
the line-of-sight is given by α21 (we define α21 such that the fraction of 2-layer formation to the total FOV
is given by α1 · α21). This is illustrated in Figure 6.

α α1

α2

21

Figure 6.1: Example FOV with definition of cloud fractions

The radiance at the spacecraft is a sum of the clear radiance, radiance from cloud #2, and radiance from
cloud #1

Ri = (1− α1 − α2)
[
RT

i,clr + ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

]
+ α2Ri,c2 + α1Ri,c1 , (6.34)
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where the thermal clear radiance, RT
i,clr, is given by

RT
i,clr ≡ εi,sBν(T (ps))τi(ps) +RD

i +

1∫
τ(ps)

Bi(T )dτi (6.35)

In Figure 6.2, some of the possible solar reflection components are shown. The Sun is assumed to be on
the right side of the figure with the exception of path “F” where it is on the left to help simplify the figure.
The dark line labeled “clear” represents the solar reflection in the clear part of the FOV.

clear C B A E FD

p

p

p
c1

c2

s

Figure 6.2: Example reflection scenarios in multiple cloud layers

It is obvious from Fig. 6.2 that the clear solar component is cloud geometry dependent. At this point,
we will ignore the geometrical effect for the following reasons

• to the extent that the radiance is proportional to the α’s, w.r.t. the set of FOV’s, used in the cloud
clearing algorithm, the η’s (see Chapter 7) and clear retrieval products will be unaffected by geometry.

• the information content of the AIRS channels will probably not allow solving for these geometry factors.

• The geometrical effects become pronounced at large solar angles and are therefore suppressed by the
cos(θ�) term. Note that in “single spot clear” scenes with neighboring clouds this could cause significant
problems.

• to first order, the geometrical effects will alter the cloud reflectivity products and, therefore, they should
be considered effective reflectivity.

• We will return to the topic of geometry at the end and give some equations which will allow us to test
the effect on cloud clearing.

• At the very end compute a scale analysis and show that this effect will be on the order of 1% of the
reflected component and, therefore, be on the order of a few noise units.
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The meaning of the top cloud (i.e., #1) radiance, Ri,c1 is significantly different than for the non-
overlapping case and will modify the form of Ri used in the code (i.e., AIRSRAD and CLDYRAD). The
bottom cloud at pc2 with emissivity εi,c2 is the same as a 1-layer cloud and can be easily expressed in terms of
the radiance coming through the cloud from below, τi,c2 ·RT

i,clr, the radiance emitted by the cloud, εi,c2R
B
i,c2

(using Eqn. 6.38 with J = 2), and the direct reflected solar radiation from the cloud.

Ri,c2 = τi,c2 ·


RT

i,clr −
1∫

τi(pc2 )

B(T )dτi




+ εi,c2B(T (pc2)) +

1∫
τi(pc2 )

B(T )dτi

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi (6.36)

We ignore the thermal down-welling term in the radiance emitted by the cloud because Rd(ν, θ) ∝ τ(1−τ)→ 0
when pc < ps. Also, if we assume than τi,c2 = 1− εi,c2 (i.e., specular reflection) then this can be simplified to

Ri,c2 = (1− εi,c2) ·RT
i,clr + εi,c2R

B
i,c2

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi (6.37)

where we define the following expression for convenience

RB
i,cJ
≡ Bi(TcJ

)τi(pc2)+

1∫
τi(pcJ

)

B(T )dτi for cloud # J (6.38)

The solar radiance component of RT
i,clr coming from the below is complicated by cloud geometry. In Eqn.

6.37 we are explicitly solving for ρi,c2 which is equivalent to path “A” in Fig. 6.2. We have purposely written
RT

i,clr to exclude using path “E”, and its inverse (the Sun on the left) due to the reasons cited before for path
“clear”. Ignoring path “E” in the retrieval will increase the retrieved value of ρi,c2 due to the unaccounted
solar radiance.

Substitution of Eqn. 6.37 and Eqn. 6.38 into Eqn. 6.34 yields

Ri = (1− α1 − α2εi,c2)R
T
i,clr + (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α2

(
εi,c2R

B
i,c2

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi

)
+ α1Ri,c1 (6.39)

The radiance from the upper cloud layer can be written in terms of the upward radiance coming from
below, attenuated by the atmosphere above, plus the emission and reflection (path “B” in Fig. 6.2) from the
cloud to the top of the atmosphere. Therefore, the radiance from the top cloud can be written as

Ri,c1 = τi,c1 ·R↑
i (pc1)τi(pc1) + εi,c1Bi(Tc1)τi(pc1)

+

1∫
τ(pc1 )

Bi(T )dτi

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi (6.40)
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where the upward radiance, R↑
i (pc1) is a combination of clear and cloudy radiance. Again, the assumption by

using RT
i,clr in this expression is that path “F”, and its inverse, are not included in this calculation. Also, we

are ignoring a path (not shown in Fig. 6.2) which passes through the upper cloud, reflects from the surface,
and passes again through the upper cloud. This path is of lesser significance because of the multiple cloud
passages. Given these assumptions

R↑
i (pc1) =

1
τi(pc1)


(1− α21)


RT

i,clr −
1∫

τ(pc1 )

Bi(T )dτi


+ α21


Ri,c2 −

1∫
τ(pc1 )

Bi(T )dτi




 , (6.41)

which can be simplified,

R↑
i (pc1) =

1
τi(pc1)


(1− α21)RT

i,clr + α21Ri,c2 −
1∫

τ(pc1 )

Bi(T )dτi


 . (6.42)

Substitution of R↑
i (pc1) (Eqn. 6.42) into Ri,c1 (Eqn. 6.40) and assuming that τi,c1 = 1− εi,c1 yields

Ri,c1 = (1− εi,c1)


(1− α21)RT

i,clr + α21Ri,c2 −
1∫

τ(pc1 )

Bi(T )dτi




+ εi,c1Bi(Tc1)τi(pc1) +

1∫
τ(pc1 )

Bi(T )dτi

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi (6.43)

using Eqn. 6.38 with J = 1 and combining terms yields

Ri,c1 = (1− εi,c1)
[
(1− α21)RT

i,clr + α21Ri,c2

]
+ εi,c1R

B
i,c1

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi (6.44)

now we substitute Ri,c1 (Eqn. 6.44) into the equation for Ri (Eqn. 6.39)

Ri = [1− α1 − α2εi,c2 ]R
T
i,clr + (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α1(1− εi,c1)
[
(1− α21)RT

i,clr + α21Ri,c2

]
+ α1

(
εi,c1R

B
i,c1

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

)
+ α2

(
εi,c2R

B
i,c2

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi

)
(6.45)

and combining terms to get the following expression for the total radiance

Ri = [1− α1 − α2εi,c2 + α1(1− εi,c1)(1− α21)]RT
i,clr

+ α1(1− εi,c1)α21Ri,c2

+ (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α1

(
εi,c1R

B
i,c1

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

)
+ α2

(
εi,c2R

B
i,c2

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi

)
. (6.46)
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At this point we need to substitute an expression for Ri,c2 (Eqn. 6.37); however, once again knowledge
of the cloud shadowing (path “C” or “D” in Fig. 6.2) is required. Path “C” is more significant, since only one
reflection and one transmission has occurred; however, this geometry requires large cloud height separations
and large solar angles. Path “D” is less likely since both the viewing and solar angle is close to nadir plus there
are two passes through the clouds. All other paths pass through 3 clouds and have at least one reflection,
so these are considered insignificant components to the calculation. We will exclude these reflection terms at
this time and address them later (Eqn. 6.50). Substituting Eqn. 6.37 into Eqn. 6.46 yields

Ri = [1− α1 − α2εi,c2 + α1(1− εi,c1)(1− α21)]RT
i,clr

+ α1(1− εi,c1)α21

[
(1− εi,c2)R

T
i,clr + εi,c2R

B
i,c2

]
+ (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α1

(
εi,c1R

B
i,c1

+ ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

)
+ α2

(
εi,c2R

B
i,c2

+ ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi

)
(6.47)

and organize terms w.r.t. RT
i,clr, R

B
i,c2

, and RB
i,c1

Ri = [1− α1 − α2εi,c2 + α1(1− εi,c1)((1− α21) + α21(1− εi,c2))]R
T
i,clr

+ α1 · εi,c1R
B
i,c1

+ [α2 + α1α21(1− εi,c1)] εi,c2R
B
i,c2

+ (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α1 · ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

+ α2 · ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi (6.48)

we can define an effective cloud fraction for cloud # 2 as

α′
2 ≡ α2 + α1 · α21 · (1− εi,c1), (6.49)

and with some simplification of terms we have the result:

Ri = [1− α1 · εi,c1 − α′
2 · εi,c2 ]R

T
i,clr

+ α1 · εi,c1R
B
i,c1

+ α′
2 · εi,c2R

B
i,c2

+ (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ α1 · ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

+ α2 · ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi (6.50)

Cloud parameter retrievals
In the recommendations we suggest an I/O format change to handle reading the overlapping cloud

fraction, α21, and spectral cloud emissivity and reflectivity. Including the overlapping cloud physics in Eqn.
6.50 will allow us to test the cloud retrieval algorithms. For the cloud parameter retrieval, using only long-
wave channels, we can solve for

• α1 · εi,c1(ν)

• α′
2 · εi,c2
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• pc1

• pc2

In daytime, using shortwave channels, we effectively solve for α1 · εi,c1 and α2 · εi,c2 . It can be seen that
the partially transmissive cloud allows separating the cloud fraction from the emissivity if εi,c2 and εi,c1 have
different frequency dependences. Potentially, if there is enough information content, we can solve for

• ρ′c1
(ν)/εi,c1(ν)

• ρ′c2
(ν)/εi,c2

• 1− α1 − α2

Cloud clearing algorithm

• In the cloud clearing algorithm it may be necessary to increase the number of free parameters (i.e.,
η’s) in the retrieval to account for a frequency dependence of the cloud emissivities. Currently, we use
3 FOV’s of 3 spots each to solve for 2 η’s. Use of Eqn. 6.50 will allow testing the use of 2 η’s.

• If the cloud clearing fails, due to an insufficient number of η’s, the rejection criteria will flag retrievals
where the reconstructed clear column radiances are above the expected noise, and that profile should
be rejects (i.e., AMSU/HSB/ AIRS-stratospheric retrieval).

• Another important issue is how significant are the cloud geometry dependent terms ignored throughout
the derivation. To the extent that the additional terms ARE NOT proportional to α1 and α2 they
will require additional η’s to handle the effective formations. To evaluate this we can modify Eqn. 6.50
in the program used to generate radiances (but not in the retrieval code) with 3 geometry parameters,
g0, g1, and g2 as follows

Ri = [1− α1 · εi,c1 − α′
2 · εi,c2 ]R

T
i,clr

+ α1 · εi,c1R
B
i,c1

+ α′
2 · εi,c2R

B
i,c2

+ g0 · (1− α1 − α2) · ρ′i,s · τi(ps, θ̃) · cos(θ�)ΩHi

+ g1 · α1 · ρ′i,c1
· τi(pc1 , θ̃) · cos(θ�)ΩHi

+ g2 · α2 · ρ′i,c2
· τi(pc2 , θ̃) · cos(θ�)ΩHi (6.51)

Re-examine Eqns. 6.37, 6.41, and 6.47. We can assign the fraction of geometric contamination for each
component with the percent the particular cloud geometry affects the reflected radiance (−1 ≤ fK ≤ 1, for
component K). For example, fF , is the fraction of the clear part of the FOV that is shadowed by cloud #
1. We can write estimates for each component and then sum these estimates to obtain the scale of the of the
geometric parameters:

g2 = 1 +
α1α21

α2
· ((1− εi,c1) · fC + (1− εi,c1)

2 · fD

)
+ ρs

1− εi,c2

ρi,c2

· fE + . . . (6.52)

g1 = 1 + ρs
1− εi,c1

ρi,c1

· fF + . . . (6.53)

g0 = 1− (1− εi,c2) · fE + (1− εi,c1) · fF + fE + fF + . . . (6.54)

• many terms are anti-correlated, so these estimates are too high
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• cloud clearing will remove any component proportional to α’s

• to first order, the f ’s are proportional to α’s, for this reason the last two terms in g0 will be dropped
(fE and fF ).

• over ocean the estimates are slightly larger for g2 and g1.

The values of the f ’s for the most significant geometric effect (remember cos(θ�) term) we will assume, for
the purpose of this scale analysis, that the f ’s ≈ ± 0.25, ε’s to 0.9, ρc’s to 0.03, α1 = 0.33, α2=0.33, α21 = 0.5,
and ρs = 0.01. The corresponding g’s have the following values

g2 − 1 = ±(0.05 · 0.25 + 0.005 · 0.25 + 0.03 · 0.25) ≈ ±2% (6.55)

g1 − 1 = ±0.03 · 0.25 ≈ ±1% (6.56)

g0 − 1 = ±0.1 · 0.25 + 0.1 · 0.25 ≈ ±5% (6.57)

If the entire reflected solar radiation contributes 20◦ K then this is ≈ 5% of that, or about 1◦ K.

6.4 Cloud Parameter Retrievals

6.4.1 The Retrieval of Cloud Top Pressure and Effective Fraction

The current cloud algorithm solves a parametric equation of the form

Ri(n) =

(
1−

Ncld∑
k=1

αi,k

)
·Rclr(n,X) (6.58)

+
Ncld∑
k=1

αi,k ·Rcld(n, Pk, εk(n),X) (6.59)

The number of cloud levels, Ncld is determined to be zero, one, or two from the observations. In this
formulation we constrain the solution to have up to two cloud top pressures, Pk, for the AIRS field-of-regard
(FOR) and we solve for the effective cloud fractions, αi,k, for each cloud level j and each FOV i. The clear
radiance, Rclr(n) is computed from the retrieval state, X, where X contains the entire atmospheric and
surface state required to compute clear radiances. The cloudy radiance computation, Rcld(n, Pk, εk(n),X),
assumes an opaque cloud at Pk and is computed about the same clear retrieval state.

In this methodology derivatives, Sj,i(n) are computed by finite differencing for each parameter, j, to be
solved for. The computed cloudy radiances, Ri(n), and the observed cloud radiances, R̃i(n), are utilized for
all nine FOV’s (i=1,9) to solve for the J ≤ 20 parameters using a regularized least squared fit to the equation

∆Aj · Sj,i(n) = R̃i(n)−Ri(n) (6.60)

using 54 AIRS 15 µm channels and window channels and where,
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Aj ≡




P1

α1,1

α2,1

α3,1

α4,1

α5,1

α6,1

α7,1

α8,1

α9,1

P2

α1,2

α2,2

α3,2

α4,2

α5,2

α6,2

α7,2

α8,2

α9,2




(6.61)

The cloud spectral emissivity, εk(n) is currently set to unity for both cloud layers. Solving for a spectral
emissivity ratio is a planned research product (P.I. J. Susskind).

6.4.2 The Retrieval of Cirrus Cloud Parameters

UMBC has added a parametric form of the cirrus cloud function to the computation of the transmittance
that is used in the computation of the clear radiance. The interaction with the cloudy radiance probably
takes some work; however, I would expect the simple formulation of the opaque cloud deck would allow a
simple addition here as well. That is to say, the cirrus cloud is simply treated as an optical depth above the
opaque cloud layers.

In this formulation the effective particle diameter, d, and Ice Water Path, iwp would be added to the
parameters for each cloudy FOV. The cloud top, Ptop, and bottom pressures, Pbot, would probably be solved
for the FOR, in an analogous form of the constrained solution above. Therefore, there would be a total
of J ≤ 40 parameters (2 opaque pressures, 18 opaque cloud fractions, Ptop, Pbot, 9 di, and 9 iwpi). We
would add more channels in the window regions in which the spectral properties of the cirrus cloud are most
prominent. The computed cloudy radiance for each FOV would then be given by

Ri(n) =

(
1−

Ncld∑
k=1

αi,k

)
·Rclr(n,X, di, iwpi, Ptop, Pbot) (6.62)

+
Ncld∑
k=1

εk(n) · αi,k ·Rcld(n, Pk, εk(n),X, di, iwpi, Ptop, Pbot) (6.63)

The tough part is that in ALL our retrievals (temperature, moisture, etc) the cloud cleared radiance is
compared to the computed clear radiances about the current state, X. If we assume cloud clearing removes
the effect of the cirrus deck then these routines do not need to include the cirrus transmittance. But the real
value of the cirrus computation may be to solve for the amount of cirrus contamination in the cloud cleared
radiance. These are either clouds not removed by the cloud clearing process or the portion of the clouds
that are uniform. That is, the cirrus cloud calculation becomes an integral part of the “clear” state because
in this formation it is NOT being cleared. In this case, we might want to utilize a retrieval using the cloud
cleared radiances, Rccr, and solve
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∆Aj · Sj,i(n) = Rccr(n)−Rclr(n,X, d, iwp, Ptop, Pbot) (6.64)

Aj ≡




d
iwp
Ptop

Pbot


 (6.65)

and the cirrus parameters become part of the “clear” state that is utilized by ALL retrieval steps. Alterna-
tively, we could “correct” the cloud cleared radiance for cirrus contamination

R̂ccr(n) ≡ Rccr(n)− (Rclr(n,X, d, iwp, Ptop, Pbot)−Rclr(n,X)) (6.66)

and then send R̂ccr(n) to all subsequent retrieval steps.
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Chapter 7

Cloud Clearing Retrieval

You can do the work or get credit for the work, but not both. Smeed’s rule (via Charles Miller 6/10/05),
http://www.secretgovernmentlabs.com/page/quoteslaws) attributed to Freeman Dyson: Reuben Smeed was his
drill sergeant. Reuben Smeed was born in Crowthorne, Berkshire, England, December 15, 1923. and during
his WWII War service was in the Operations & Research of the R.A.F. Bomber Command, 1943–1945.

Cloud clearing is a retrieval but we will consider it separately in this document because many retrievals
methodologies we are considering require clear radiances. The cloud clearing retrieval is usually build as part
of a retrieval system. This concept is illustrated in Fig. 9.1. In the AIRS Science Team algorithm we have a
first guess from climatology, X0,0

L and we use only microwave radiances to solve for T (p), Ts, q(p) in retrieval
steps #1 and #2. Then we cloud clear the infrared radiances using this state, X2,i

L .

Figure 7.1: Images Courtesy of Earth Sciences and Image Analysis Laboratory, NASA Johnson Space Center
(http://eol.jsc.nasa.gov). STS099-727-42 (Feb. 15, 2000) on left and STS104-724-50 on right (July 20, 2001).
Delaware bay is at top and Ocean City is right-center part of both images. Images are ≈ 300 and 120 km
across, respectively.

The effect of clouds are very complex. Multiple scattering computations (see Chapter 26) are compu-
tationally burdensome and are seldom constrained by the observations. For this reason, the AIRS Science
Team has adopted cloud clearing as its operational approach. The basic assumption of cloud clearing is that
within an AMSU field of view (FOV ≈ 48 km) the cloud formation characteristics are constant and only the
cloud fraction, α, varies over the AMSU footprint. In this way, observations from multiple AIRS FOV (≈

192
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definition of cloud clearing symbols
symbol description
s superscript s refers to the step
i FOV index
j η index
J number of ηj

k ζ index
n channel index
NF the number of FOV’s within an AMSU footprint
NA the number of FOV’s within Rn

δn,n′ Kronecker delta function
ηj extrapolation parameters, determined w/o damping
η̃j extrapolation parameters, determined w/ damping
δη̃j error in η with damping
As

n noise amplification factor
Rn,j observed radiance in FOV j
Xs

L geophysical state (T (p), q(p), O3(p), ε(n), . . .)
Rn(Xs,i−1

L ) Radiance Computed from a geophysical state
Rs

n,CCR clear column radiance
Rs

n,EST clear radiance estimate
Rn average of observed cloudy FOV’s
In,n′ instrument noise covariance
NE∆N standard deviation of instrumental noise
Nn,n′ error covariance of (Rs

n,EST −Rn)
Wn,n′ inverse of error covariance of (Rs

n,EST −Rn)
Ss

n,j FOV contrast, Rn −Rn,j

Us
j,k eigenvectors of [

(
Ss

j,n

)T
W s

n,n′Ss
n,j ]

Λs
k,k eigenvalue matrix of [

(
Ss

j,n

)T
W s

n,n′Ss
n,j ]

λs
k diagonal elements of Λs

k,k

ζs
k transformed extrapolation parameters(
δζ̃kδζ̃

T
k

)s

error covariance of solved components of ζ(
δζ̂kδζ̂

T
k

)s

error covariance of components of ζ not solved for(
δζk · δζT

k

)s total error covariance of ζ

13.5 km) can be used to compute the radiances which would be seen if the scene were clear. Another analogy
that is often employed is that we are viewing the atmosphere through Venetian blinds. In this analogy we
can see details of the atmosphere where it is not obscured.

To test cloud clearing we do not need a full micro-physical model of the clouds. Instead we need to be
able to specify the radiative effect of the clouds. The infrared cloud radiances in our retrieval simulation are
specified by the following parameters for up to 2 cloud levels.

Cloud clearing methodology has a long heritage starting from the original papers in which single layer
gray clouds were considered Smith, 1968, Chahine, 1970, and Chahine, 1974. Here a single parameter can be
derived using radiances from two cloudy FOV’s. This approach will be discussed in Section 7.1.

Cloud clearing scenes with multiple cloud formations was discussed in Chahine, 1975, Chahine, 1977,
Chahine et al. 1977. It is in multiple cloud formations that the η formulation has an advantage. While it
is true that a single channel and 2 FOV’s can be used to cloud clear a single spectrum, for multiple FOV’s
many channels must be used in a least squares sense to discriminate the clouds at different levels.

Operational considerations and enhancements were discussed in McMillin and Dean, 1982 and Smith et
al., 1992. Joiner and Rokker 2002 discussed cloud clearing in a variational assimilation context.

Recent improvements were made in the AIRS cloud clearing algorithm to improve the ability to estimate
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Table 7.1: Cloud parameters used in simulation of radiances
Pcld(i) cloud top pressure of cloud i
αcld(i) cloud fraction of cloud i
εcld(i, ν) spectral cloud emissivity of cloud i
ρcld(i, ν) cloud solar reflectivity for cloud layer i

Figure 7.2: Bill Smith Sr., left, with a colleague

errors in the cloud cleared radiances and to determine the optimal configuration of FOV’s. The changes,
discussed in Susskind, et al. 2003, are

• Use the 9 AIRS cloud scenes without any a-priori constraint such as preferential grouping.

• Compute cloud cleared radiances (CCR’s) and error estimates for the CCR’s, specifically taking into
account the noise amplification induced by the linear extrapolation and the spectrally correlated com-
ponent of the error.

• Compare the clear state estimate with the AIRS retrieval products and reject cases that violate any of
the assumptions of cloud clearing.

• Extrapolate from the average radiances in AIRS field-of-regard (FOR) instead of clearest field-of-view
(FOV). As cloud fraction in FOR, α, goes to zero, the cloud clearing parameters, η, go to zero. (Idea
originally from Larry McMillin, NOAA/NESDIS).

• Cloud clearing can be thought of as “looking around” opaque clouds or “seeing” through transmissive
clouds within each FOV. It removes all effects that are proportional to cloud fraction (e.g., thermal
radiance from the cloud, reflected solar radiance, cloud shadowing, etc.).

• Cloud clearing does not require any modeling or knowledge of cloud optical properties or spatial geom-
etry.
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Figure 7.3: Snapshot of Moustafa Chahine at a meeting in 2003 (Courtest of Mous Chahine)

• Original operational solutions using one η did not work well, possibly because most scenes have mixtures
of cloud types or variability in cloud altitude with FOR.

• For complex cloud formations a small set of parameters (≤ 4) can “clear” the cloud effect from all
infrared channels.

7.1 Cloud clearing using 2 adjacent FOV’s

The original papers in which single layer gray clouds were considered (Smith, 1968, Chahine, 1970, and
Chahine, 1974) used a single parameter can be derived using radiances from two cloudy FOV’s. R1(n) and
R2(n), where n is the channel index. The cloud clearing parameter, expressed as either N∗ or η in the
literature, can be derived from a single channel or a number of channels in a least square sense. For the
single cloud layer, the single parameter can be used to derive the entire cloud cleared spectrum from cloudy
radiances in two FOV’s; for AIRS that means that a single parameter can produce cloud cleared radiances
(CCR’s) for all 2378 channels.

In general, the cloudy radiance for FOV J can be given as a linear combination of the clear radiance and
Nc cloud formations. This methodology is based on the discussion in Section 6.3 leading to equation 6.34.

Rj(n) =

(
1−

Nc∑
k=1

αk,j

)
·Rclr(n)

+
Nc∑
k=1

αk,j ·Rcld,k(n) (7.1)

If, for example, there were two FOV’s given by Eqn. 7.1 and one cloud formation (that is Nc = 1 and
we can drop the k subscripts) then the two cloudy radiances would be given by

R1(n) = (1− α1) ·Rclr(n) + α1 ·Rcld(n) (7.2)
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R2(n) = (1− α2) ·Rclr(n) + α2 ·Rcld(n) (7.3)

Historically there are two formulations of cloud clearing differentiated by the symbol used to extrapolate
cloud radiances to the clear radiances. The N∗ symbol was used by Bill Smith and the operational codes at
NOAA developed by Larry McMillin. The η symbol was used by Mous Chahine and the AIRS science team.
Both symbols are derived by simultaneously eliminating Rcld(n), assuming α1 �= α2, from Eqn. 7.2 and Eqn.
7.3 as follows

N∗ method | η method
N∗ = α1/α2 | η = α1/(α2 − α1) (7.4)

Rclr(n) = (R1(n)−N∗ ·R2(n))/(1−N∗) | Rclr(n) = R1(n) + η · (R1(n)−R2(n)) (7.5)
N∗ = η/(1 + η) | η = N∗/(1−N∗) (7.6)

The extrapolation process is illustrated in Fig. 7.4.

FOV #2

FOV #1

40% cloudy

60% cloudy

Figure 7.4: Two AIRS partially cloudy field of views (FOV’s) are illustrated showing that each FOV has
some fraction of clear radiance and some fraction of cloudy radiance. We define the ensemble of FOV’s as
the retrieval field of regard (FOR).

The η formulation has an advantage in that is can be easily extended to multiple cloud layers and more
than two FOV’s. For example, in Chahine 1977 the equation is expanded as follows:

Rclr(n) = R1(n) + η1 · (R1(n)−R3(n)) + η2 · (R1(n)−R2(n)) (7.7)

In the early years of the development of the AIRS algorithm (1995-1997) many methods were explored
for the solution of multiple cloud formations. The early algorihtms consisted of sorting the 9 AIRS radiances
using the 8 µm brightness temperature and then grouping the FOV’s into spots such that a one or two η′s
could be solved for. The grouping made the code complex and one can easily see a disadvantade of a this
formulation. If R1, R2, and R2 are clear then the solution for η’s tends towards negative values or to zero. In
both cases, we will see, this is not an ideal solution for the clear case since in the former the noise is amplified
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and in the later, the solution doesn’t tend towards the obvious solution in clear scenes, that Rclr(n) = average
of the 9 FOV’s.

This will be discussed in more detail below; however, for now let’s keep it simple and consider a case
with only 2 FOV’s to illustrate some basic concepts. We begin with the cloud clearing equation, given in
Eqn. 7.5, and rewritten here

Rclr(n) = R1(n) + η · (R1(n)−R2(n)) (7.8)

If we reorganize Eqn. 7.8 to solve for η we obtain

η =
Rclr(n)−R1(n)
R1(n)−R2(n)

(7.9)

We can also s ubstitute Eqn. 7.2 and Eqn. 7.3 to obtain

η =
α1

α2 − α1
(7.10)

We can also compute the amplification of the random noise that results from computing cloud cleared
using Eqn. 7.8. See Section 7.3 for more details. First we rewrite Eqn. 7.8 as

Rclr(n) = R1(n) (1 + η)−R2(n) · η (7.11)

and note that the standard deviation of the error in R1(n) and R2(n) are both given by NE∆N. The error
in Rclr is given by

δR2
clr(n) = NE∆N2 · (1 + η)2 + NE∆N2 · η2 (7.12)

= NE∆N2 ·
[
(1 + η)2 + η2

]
(7.13)

therefore, the error has been “amplified” by

A =
√

(1 + η)2 + η2 (7.14)

For example, lets say that R1(n) = 60 and R2(n) = 50 for channel n and α1 is 40% and α2 is 60%
cloudy. Then we know that 10 units of radiance is associated with a 20% change cloudiness. To extrapolate
to clear from 40% cloudiness we would need (10 radiance/20%) times 40% from R1 or Rclr(n) = R1 + α1

α2−α1
·

(R1(n)−R2(n)) = 60 + 40
20 · 10 = 80 radiance units.

In practice, we do not know the cloud fractions. Instead we use an estimate of Rclr(n) to solve for η.
The AIRS algorithm, for example, finds the value of η that minimizes the weighted difference between clear
column radiances, Rs

n,CCR for channel n, and an estimate of the clear radiances.
The cloud correction (clear radiances minus cloudy radiances) provided by cloud clearing is a simple

proportion of cloud contrast for all channels. In Fig. 7.5 the black curve represents a radiance with no
clouds (α = 0), the red curve represents a FOV with α =40% and the green curve represents a FOV with
α=60%. It is easy to see that the proportionality is the same between these curves. In window regions (e.g.,
800-1000 cm−1) there is a large correction and we can see that the difference between 40% and 60% is twice
the difference between 0% and 40%. In opaque regions (e.g., 650 to 720 cm−1) there is no difference because
the instrument cannot see the clouds (this example has clouds at 300 mb). When we solve for η using these
2 FOV’s and a estimate of Rclr there will be errors in the determination of η. This will result in a spectrally
correlated radiance error. This is illustrated in the bottom panel of Fig. 7.5 by using Eqn. 7.8 with an
error in η. Throughout this chapter, and specifically in Section 7.6, we will discuss the advantange of the
AIRS science team method to estimate these spectrally correlated errors using the formal least squares error
covariance, δηδηT , to estimate the cloud cleared radiance covariance δRδRT .

Larry McMillin found that it is better to extrapolate from the average of all the radiances instead of
assuming a clearest FOV. The basic reason is that the size of η is given by the difference of a computed
radiance (clear estimate) minus a pivot point. If one uses the clearest FOV for the pivot point (R1 in the
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Figure 7.5: Top panel: Example of AIRS radiances with 0% (black), 40% (red) and 60% (green) cloud
fraction. Bottom panel: error in clear radiance due to a 5% error in the determination of η. See text for
discussion.

previous example) then the value of η is less but the noise in η is given by the noise in R1. If the pivot point
is the average than the size of η is larger, but the noise is less. Our example above would be written as

Rclr(n) = R(n) + η1 ·
(
R(n)−R2(n)

)
+ η2 ·

(
R(n)−R1(n)

)
(7.15)

where,

R(n) =
1
2

(R1(n) +R2(n)) (7.16)

and the reverse ordering of the η’s with respect to FOV’s is historical. In the original code the FOV’s were
ordered from warmest to coldest which is roughly ordered from clearest to cloudiest. The first η is then
associated with the cloudiest FOV.

We can no longer solve for the cloud with one channel. Multiple channels are used in a least squared
sense to determine both η′s. In addition, the two η’s are not independent. We cloud solve for η1 and η2
independently. Since, in our example R = 55 and α = 50%, we would find that η1 = α

α2−α or η2 = α
α1−α .

Therefore, possible solutions are η1 = 50
60−50 = 5 & η2 = 0 or η1 = 0 & η2 = 50

40−50 = −5 or any linear
combination of these two. Usually in the retrieval the

∑
η = 0 so that −η2 = η1 = 1

2
α

α2−α .

Rclr(n) = R+
α

α2 − α · f ·
(
R(n)−R2(n)

)
+

α

α1 − α · (1− f) · (R(n)−R1(n)
)

(7.17)

Examples, of some of the linear combinations for this example are

• Rclr(n) = 55+5 ·f · (55−50)−5 · (1−f) · (55−60) = 80 0 ≤ f ≤ 1, A =
√

1
2 (1 +

∑
etaj)

2 +
∑
η2

j

• Rclr(n) = 55 + 5 · (55− 50) + 0 · (55− 60) = 80 f = 1, A=6.6

• Rclr(n) = 55 + 0 · (55− 50)− 5 · (55− 60) = 80 f = 0, A=5.7
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• Rclr(n) = 55 + 1 · (55− 50)− 4 · (55− 60) = 80 f = 0.2, A=5.0

• Rclr(n) = 55 + 2.5 · (55− 50)− 2.5 · (55− 60) = 80 f = 0.5, A=3.6

However, notice that f = 0.5 has the minimum noise amplification factor.
In general, an ideal combination of η’s will minimize the noise of the cloud clear radiances. For example,

imagine a set of 9 FOV’s where the first five are nearly clear (that is the radiances are very similar for these
5) and the last four are almost 100% cloudy (again, these radiances are very similar). It seems obvious
that we can simplify this problem by creating two new FOV’s and solve for a single η. We could imagine a
transformation matrix U which would transform from the 9-spots to 2-FOV’s

Ui,k =




1
5 0
1
5 0
1
5 0
1
5 0
1
5 0
0 1

4
0 1

4
0 1

4
0 1

4




(7.18)

and the two FOV’s could be written in terms on the linear combination of two spots.

R̂n,k = Rn,i · Ui,k where k = 1, 2 (7.19)

This methodology formed the basis of the early AIRS algorithms (for example, see cloudmt2.F). The thinking
was that grouping of FOV’s had to improve the solution by minimizing the number of free parameters to solve
for. Unfortunately, the grouping of spots becomes problematic, since in many situations there is a gradual
change in cloudiness.

The cloud clearing equation could be written in terms of the original nine spots and the two extrapolation
parameters in the transformed FOV’s. We use the symbol ζ to indicate this is a transformation parameter
in the transformed space.

Rclr(n) = R̂n,1 + ζ̂1 ·
(
R̂n,1 − R̂n,2

)
(7.20)

= Rn,i · Ui,1 + ζ̂1 · (Rn,i · Ui,1 −Rn,i · Ui,2) (7.21)

= Rn,i · Ui,1 +
ζ̂1
2
· (Rn,i · Ui,1 −Rn,i · Ui,2)− ζ̂1

2
· (Rn,i · Ui,2 −Rn,i · Ui,1) (7.22)

We can begin to visualize a more general form of the equation. What is emerging is that if Ui,k can be
derived, then a minimum number of η’s can be solved for. We are imposing a constraint based on grouping
of the radiances. We can write this equation in a more general manner in which we pivot off of the average
radiance (per Larry’s suggestion). Here the ζ ′s are not equal in magnitude, as in the equation above.

Rclr(n) = R(n) +
(
R(n)−Rn,i

) · Ui,k · ζk (7.23)

The ζ’s can be transformed to a traditional η parameter

ηi ≡ Ui,k · ζk (7.24)

which satisfies the following equation in 9 spots.

Rclr(n) = R(n) +
(
R(n)−Rn,i

) · ηi (7.25)

however, the 9 η’s are not independent. We will show that the transformed formulation has other advantages
as well, in terms of determination of fitting errors. In general, we would like to determine the transformation
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matrix, Ui,k from the cloudy radiances. We will begin the derivation of this method by writing the cloud
clearing equation in the desired form

Rs
n,CCR ≡ Rn +

Nη∑
j=1

(
Rn −Rn,NF +1−j

) · ηs
j (7.26)

where Rn is called the extrapolation point and is an average of NA FOV’s defined by

Rn ≡ 1
NA

NA∑
i=1

Rn,i (7.27)

In the original 9-spot GSFC methodology the FOV’s were sorted based on the radiance at 1230 cm−1

(8.12 µm), with i = 1 being the brightest FOV. The standard deviation of contrast, given by Rj−R1, for a set
of cloud clearing channels is used to determined the NA FOV’s to be used in the cloud clearing extrapolation
point and the remainder of the FOV’s are used to determine the cloud clearing parameters.

In January of 2000 we implimented a change, as suggested by Larry McMillin, to simply the average
by using all NF FOV’s and solve for NF extrapolation parameters. This eliminates the need for sorting the
FOV’s and the η′s gracefully tend towards zero as the scene becomes clear. This is illustrated in Fig. 7.6

parameter GSFC method NOAA method
FOV’s sorted sorting not required
NA 1 → 4 clearest NF

Nη NF −NA NF

We can write the radiance contrast in Eqn. 7.26 as a matrix,

Ss
n,j ≡ Rn −Rn,NF +1−j (7.28)

For 9 FOV’s the components of this matrix are given by

Ss
n,j =




R1 −R1,9 R1 −R1,8 . . . R1 −R1,1

R2 −R2,9 R2 −R2,8 . . . R2 −R2,1

. . . . . . . . . . . .
RN −RN,9 RN −RN,8 . . . RN −RN,1


 (7.29)

We select a subset of channels, N , from the subset of Nc cloud clearing channels which are most sensitive
to the clouds. Channels are removed from the Nc channel list on a case by case basis according to the following
tests

• if maximum(Ri(n)−Rj(n)) for all i and j ≤ 3.5 · √2 ·NE∆N(n),

• if τ(Ps, n) ≥ τthreshold and the number of channels exceeding this threshold is greater than Nthreshold

For a cloud in the 800 mb range the value of N ≈ 40 and near 100 mb the value of N ≈ 60.
To solve Eqn. 7.26 we use an estimate of the clear column radiance, Rs

n,EST , to solve for the cloud
clearing parameters, ηj , in Eqn. 7.26. The equation we need to solve can be written in matrix form as

Rs
n,EST −Rn = Ss

n,j · ηs
j (7.30)

The estimate of the clear radiances can be derived from

1. infrared radiances computed from an estimate of the clear atmosphere from a microwave physical
retrieval, Rn(Xs,i−1

L )
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Figure 7.6: Example in which R1(α1 = 40%)=60 ± 4 and R2(α2 = 60%) = 50 ± 4. Rclr = 80± 14.4 (noise
is amplified by a factor of A =3.61). Using R=55 ± 2.8 as the pivot point improves the LSQ fit (per L.
McMillin, NOAA/NESDIS)

2. infrared radiances computed from an estimate of the clear atmosphere from a infrared/microwave
physical retrieval which agrees with the microwave radiances,

3. infrared radiances computed from regression with microwave radiances.

We will apply a weight to the channels used in the least squares fit of this equation, W s
n,n′ , which is the

inverse of an estimate of the covariance of Rs
n,EST − Rn. The error covariance is given by computational

error estimates associated with Rs
n,EST derived from error estimates in the geophysical parameters, Cs

n,n′

(see Eqn. 8.123) and instrumental noise, In,n′ , associated with Rn.

W s
n,n′ =

(
In,n′

NA
+ Cs

n,n′

)−1

(7.31)

The computational error estimates, Cs
n,n′ , are discussed in more detail in Section 21.4 and we use Eqn.

8.121 to compute derivatives of the radiance with respect to all the parameters held constant (temperature
profile, water profile, surface temperature, surface emissivity, surface reflectivity). The cloud clearing can be
iterated (e.g., see Table 21.4) if the error estimates for the geophysical state are improved in the retrieval
process.

The error covariance matrix, Ns
n,n′ , is computed in the first iteration of every step and is the estimate of

the uncertainty in the observed minus computed effective brightness temperature difference, ∆Θs,i
n . It consists

of the clear column radiance error estimate, discussed earlier (Eqn. 7.67) and computation uncertainties in the
forward calculation of Rn

(
Xs,i

N

)
. The computational uncertainty is calculated for all geophysical parameters,

X, not modified by the retrieval and, therefore, assumed known in a given step of the retrieval process.
The radiance error estimate, Es,i

n,g, due to uncertainties in geophysical quantities is computed from error
estimates in geophysical groups Xs,i

L,g (e.g., an entire temperature profile). As with the sensitivity functions,
this can be thought of as an error estimate of a parameter, δAg, and an associated function, F s

g (L). The
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partial derivatives are calculated from the current estimate of the geophysical state, Xs,i
L , and an estimate

of the uncertainty in each geophysical group to be held constant in this stage of the retrieval, δXs,i
L,g, and is

calculated by a finite difference
for infrared channels (with additive functions)

Es,i
n,g ≡ δAs,i

j ·
∂Rn

(
Xs,i

L + Fj ⊗ Âj

)
∂Aj

∣∣∣∣∣
Xs,i

L

(7.32)

�
(
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

))
(7.33)

and for microwave channels

Es,i
n,g � Θn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Θn

(
Xs,i

L

)
(7.34)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated with respect
to other parameters (e.g., surface spectral emissivity error can be correlated with skin temperature). We use
Qg as a scaling to compensate for assumed anti-correlation in these error estimated. Currently we set Qg to
0.5 for T (p) and q(p) error estimates and 1.0 for all other error estimates.

Figure 7.7: Examples of radiance errors, En,g for some typical geophysical errors
.

The computational covariance matrix, Cs,i
n,n′ , is composed of a summation of all the radiance error

estimate for all geophysical parameters held constant during a retrieval

Cs,i
n,n′ ≡

∑
g

Es,i
n,g ·

(
ET

g,n

)s,i
(7.35)

Note that for the AIRS and de-apodized interferometers the instrument noise correlation matrix, In,n′ ,
is given by
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In,n′ = NE∆Nn · δn,n′ ·NE∆Nn′ (7.36)

where, the Kronecker delta function, δn,n′

δn,n′ = 1 if n = n′

= 0 if n �= n′ (7.37)

For an apodized interferometer the correlation matrix and noise reduction factor for the apodization function
would replace the Kronecker delta function (see Barnet et. al, 2000).

Multiplying both sides of Eqn. 7.30 with Eqn. 7.31 yields

W s
n,n ·

(
Rs

n,EST −Rn

)
= W s

n,n · Ss
n,j · ηs

j (7.38)

then multiplying both sides by the transpose of the S-matrix yields

(
Ss

j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
=
(
Ss

j,n

)T ·W s
n,n · Ss

n,j · ηs
j (7.39)

and the least squares determination of the extrapolation parameters would be

ηs
j =

[(
Ss

j,n

)T ·W s
n,n · Ss

n,j

]−1

· (Ss
j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.40)

In low signal-to-noise or clear scenes the signal-to-noise matrix,
[(
Ss

j,n

)T ·W s
n,n · Ss

n,j

]
, can vanish and

the solution would become unstable. In addition, we would like to determine the error covariance of the cloud
clearing parameters, δη′δη, which, we will discover, is equal to the inverse of the signal-to-noise matrix. The
error covariance is highly non-diagonal which makes both damping and noise determination difficult.

7.2 Optimal transformation of the cloudy FOV’s

The matrix to be inverted can be transformed to a vector of eigenvalues, λs
k, with a unitary transformation

matrix, Us
j,k. The index j denotes the parameters in transformed space versus k for the untransformed

parameters. This is equivalent to transforming the original Ss
n,j matrix to an optimum linear combination of

the original radiance differences, Ss
n,j · Us

j,k.

Λs
k,k ≡

(
Us

k,j

)T · (Ss
j,n

)T ·W s
n,n · Ss

n,j · Us
j,k (7.41)

when λs
k are the diagonal elements of Λs

k,k.
We use the routines in numerical recipes to solve for Us

j,k and λs
k (see Press et. al 1986, pgs. 350-363).

The code uses their routines and looks like

CALL DTRED2(Ujk, ndim, maxdim, lambda, e2) ! intermediate U,lambda,e2
CALL DTQLI(lambda,e2,ndim,maxdim, Ujk, iret) ! compute lambda(k), U(i,k)
if(iret.ne.0) goto 4200
CALL DEIGSRT (lambda, Ujk, ndim, maxdim ) ! SORT lambda, U(i,k)
do k = 1,ndim

lambda(k) = DMAX1(lambda(k),0.1D-8) ! make sure all are positive
enddo
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Eigenvalues where λs
k < λc, where λc is determined empirically, are NOT used in the solution. Removing

low eigenvalues has the effect of reducing noise in the solution. The number of non-zero eigenvalues is an
estimate of the number of cloud formations determined by the observed radiances and the signal-to-noise
analysis. The linear combination associated with each eigenvalue represents is uncorrelated with the other
eigenvalues. The total number of cloud formations, Nζ can be computed from the total number of significant
eigen-functions, defined by

φs
k = 1 if λs

k ≥ λc

= 0 if λs
k < λc (7.42)

Nzeta =
K∑

k=1

φs
k (7.43)

Eqn. 7.30 can then be written in transformed ζ space or un-transformed η space as follows.

Rs
n,CCR = Rn +

(
Ss

n,j · Us
j,k

) · ζs
k (7.44)

= Rn + Ss
n,j ·

(
Us

j,k · ζs
k

)
= Rn + Ss

n,j · η̃s
j (7.45)

Multiplying both sides of Eqn. 7.44 with Eqn. 7.31 yields

W s
n,n ·

(
Rs

n,EST −Rn

)
= W s

n,n ·
(
Ss

n,j · Us
j,k

) · ζs
k (7.46)

then multiplying both sides by the transpose of the transformed S-matrix yields

(
Us

k,j

)T (
Ss

j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
=
(
Us

k,j

)T (
Ss

j,n

)T ·W s
n,n · Us

j,kS
s
n,j · ζs

k (7.47)

and the least squares determination of the extrapolation parameters would be

ζs
k =

[(
Us

k,j

)T (
Ss

j,n

)T ·W s
n,n · Ss

n,jU
s
j,k

]−1

· (Us
k,j

)T (
Ss

j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.48)

however, the inverse can be replaced with Eqn. 7.41

ζs
k =

[
Λs

k,k

]−1 · (Us
k,j

)T (
Ss

j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.49)

=
[

1
λs

k

]
· (Us

k,j

)T (
Ss

j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.50)

Eqn. 7.49 is exactly equal to the transform of Eqn. 7.40

ηs
j = Us

j,kζ
s
k (7.51)

however, we can now remove the ζ’s associated with low eigenvectors.

ζ̃s
k =

φs
k

λs
k

· (Us
k,j

)T · (Ss
j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.52)

η̃s
j ≡ Us

j,k · ζ̃s
k = Us

j,k ·
φs

k

λs
k

· (Us
k,j

)T · (Ss
j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rn

)
(7.53)

where η̃s
j is the extrapolation parameters from the damped least squares solution.
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7.3 Noise Amplification due to cloud clearing

The cloud cleared radiances are a linear combination of the measured radiances. The same linear combination
is used for each channel, so we will temporarily drop the notation for channel. The measured radiances have
a standard deviation which is measured directly from multiple measurements the on-board black body which
is called the noise equivalent delta radiance, NE∆N. The value of NE∆N is measured for each granule (6
minutes, 135 scan lines) of AIRS and many granules are analysed to produce the statistics given in the
channel properties files.

A linear combination of measured radiances,
N∑

j=1

wj · Rj , will have a standard deviation equal to the

standard deviation of the measurement error, NE∆N, times the root sum square (RSS) of the weights,

NE∆N ·
√

N∑
j=1

w2
j , if the radiance errors have a Gaussian distribution.

To show this, imagine a set of noise free radiances, R̂j . Our linear combinations of radiances is then
equal to

N∑
j=1

wj ·Rj =
N∑

j=1

wj · (Rj + NE∆N · rj) (7.54)

=
N∑

j=1

wj · R̂j + NE∆N
N∑

j=1

wj · rj (7.55)

Where rj are a set of random numbers with a Gaussian distribution. That is the mean is zero,
∑
rj → 0,

and the standard deviation equal to one,
∑
r2j → J . If the weights of our cloud clearing are uncorrelated

with the random errors (this assumption fails when cold clouds affect the instrument noise) then we see that∑
(wj · rj)2 →

∑
w2

j .
To determine the effect of cloud clearing on the instrument noise we begin by re-writting Eqn. 7.45 as

a simple linear combination of observed radiances

7.3.1 Noise amplification when NF �= NA

(current PGE method)

Rs
n,CCR = Rn + Ss

n,j · η̃s
j

= Rn +
(
Rn −Rn,NF +1−j

) · η̃s
j

= Rn ·

1 +

Nη∑
j=1

η̃s
j


− Nη∑

j=1

η̃s
j ·Rn,NF +1−j

=




1 +
Nη∑
j=1

η̃s
j

NA


 ·

NA∑
j=1

Rn,j −
Nη∑
j=1

η̃s
j ·Rn,NF +1−j

= a ·
NA∑
j=1

Rn,j +
Nη∑
j=1

bj ·Rn,NF +1−j (7.56)

Where a = (1 +
Nη∑
j=1

η̃s
j )/NA and bj = ηs

j . For AIRS the radiance errors are spectrally uncorrelated and

have a Gaussian distribution so we can replace Rn,j in Eqn. 7.56 with NE∆N and take the RSS of the terms
of the linear combination
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σ
(
Rs

n,CCR

)
=

√√√√a2 ·NA ·NE∆N2 +
Nη∑
j=1

b2j ·NE∆N2

= NE∆N ·

√√√√√ 1
NA


1 +

Nη∑
j=1

η̃s
j




2

+
Nη∑
j=1

(
ηs

j

)2 (7.57)

= NE∆N ·A (ηs, j) (7.58)

and factoring out the NE∆N’s yields the noise amplification factor for channels which are cloud cleared, As
η.

As
η ≡

√√√√√ 1
NA


1 +

Nη∑
j=1

η̃s
j




2

+
Nη∑
j=1

(
ηs

j

)2 when NA < NF (7.59)

7.3.2 Noise amplification when NF = NA = Nη

For the NOAA method all the FOV’s are used for the extrapolation point (NA = NF ) and η’s (Nη = NF ),
so the equation for the amplification factor is different.

Rs
n,CCR = Rn + Ss

n,j · η̃s
j

= Rn +
(
Rn −Rn,NF +1−j

) · η̃s
j

= Rn


1 +

NF∑
j=1

η̃s
j


+

NF∑
j=1

Rn,NF +1−j · η̃s
j

=


 1
NF
·

NF∑
j=1

Rn,j


 ·

1 +

NF∑
j=1

η̃s
j


− NF∑

j=1

(
Rn,NF +1−j · η̃s

j

)
(7.60)

=
NF∑
j=1

Rn,NF −1,j · 1
NF


1 +

NF∑
j=1

η̃s
j


− NF∑

j=1

(
Rn,NF +1−j · η̃s

j

)
(7.61)

=
NF∑
j=1

(wj ·Rn,NF +1−j) (7.62)

where wj ≡
(

1 +
NF∑
j=1

η̃s
j

)
/NF − η̃s

j . The standard deviation in Rs
n,CCR is given by the RSS of wj ’s times the

noise in each channel so that

σ
(
Rs

n,CCR

)
=

√√√√NF∑
j=1

w2
j ·NE∆N2

= NE∆N

√√√√NF∑
j=1

w2
j

= NE∆N

√√√√√ NF∑
j′=1


 1
NF
·

1 +

NF∑
j′=1

η̃s
j′


− η̃s

j




2

(7.63)
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As
η =

√√√√√NF∑
j=1


 1
NF
·

1 +

NF∑
j′=1

η̃s
j′


− η̃s

NF +1−j




2

when NA = NF (7.64)

Comparing Eqn. 7.64 with Eqn. 7.59 we can see the advantage of pivoting off the average versus a
selected set of FOV’s. The argument of the RSS tends to be smaller and thus the amplification factor is
smaller if we pivot off the average.

In Fig. 7.8 a histogram of the amplification factor is shown for AIRS observations on Sep. 6, 2002.
The dotted line represents the distribution of all cases (7110 cases with global distribution). The solid line
represents cases where the infrared retrieval was accepted (see Section 21.9. If the field of regard is clear, the
amplification factor is 1

3 . This is annotated with a line labeled “9” in the figure. In this ensemble, 285 cases
(4%) are very close to clear (0.33 ≤ A ≤ 0.40). Of general note, in this ensemble the cloud clearing algorithm
determined that

40% of the cases were single cloud formation

40% of the cases were a formation requiring 2 ζ’s

20% of the cases required ≥ 3 ζ’s

Figure 7.8: Histogram of the amplification factor for AIRS observations on Sep. 6, 2002. See text for
description

7.4 Selecting which channels to average and which channels to
cloud clear

Since cloud clearing is usually a noise amplifier (i.e., A ≈ 1.6±0.7) a channel that is insensitive to clouds has
been degraded by the process of cloud clearing. If a channel is insensitive to clouds we can simple average
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the FOV’s and reduce the noise; however, when making the decision to η or average a channel it is best
to average conservatively. Channels that are cloud contaminated and averaged will induce a bias into the
retrieval. For AIRS ≈ 17 channels are completely insensitive to terrestrial clouds (a cloud below 100 mb).

In the AIRS algorithm we test to see if a channel is sensitive to the clouds. This test has two parts. The
first is an off-line computation (with ≈ 4500 profiles) to determine Pcld(n, θ), which is the pressure that a
channel usually begins to sense a cloud.

Table 7.2: # of AIRS channels averaged versus cloud top pressure
ALL chl’s chl’s used

(2378) (258)
θ = θ = θ = θ =

Pcld 1.65 47.85 1.65 47.85
100.00 57 86 8 11
200.00 156 201 27 44
300.00 206 230 46 52
400.00 225 247 52 58
500.00 240 275 57 64
600.00 255 293 62 70
700.00 286 338 72 79
800.00 309 370 78 86
900.00 320 392 78 90

In each cloud clearing step we also retrieve the cloud parameters (currently we only solve for Pcld(i) and
αcld(i) for 2 cloud levels using the measured cloudy radiances. We can use the derived cloud top pressure
to select which channels are likely to be unaffected by clouds. Any channel in this list that is sensitive to
clouds is cloud cleared - because statistically it might be sensitive to clouds (i.e., we are being conservative).
The channels that are likely to be unaffected by clouds are then tested to ensure that the standard deviation
(square root of the RMS2 minus AVERAGE2) of the channel is lower than a reasonable (two times the
expected) noise figure (i.e., again, we are being conservative).


 1
NF
·

NF∑
j=1

R2
j −

 1
NF
·

NF∑
j=1

Rj




2



1
2

≤ NE∆Nn√
NF

· 2 (7.65)

If a channel passes both of these tests then it is averaged and the cloud clearing amplification value is given
by

As
n =

1√
NF

for averaged channels

As
n = As

η for cloud cleared channels (7.66)

The covariance of the clear column radiance is given by the amplified instrument noise and the noise due
to the error in ζk, which is found by differentiating Eqn. 7.44 w.r.t. ζk and multiplying the result by its
transpose. The total error of the cloud cleared radiances are highly correlated due to the error in ζk and is
given by

δRs
n,CCR ·

(
δRs

n′,OBS

)T = As
n ·NE∆N(n) · C(n, n′) ·NE∆N(n′) ·As

n′

+
[
Ss

n′,j · Us
j,k ·

(
δζk · δζT

k

)s · (Us
k,j

)T · (Ss
j,n

)T ] (7.67)

where, C(n, n′) is the spectral correlation matrix (for AIRS it is the identity matrix and for CrIS and IASI
it is the apodization correlation matrix).

(
δζk · δζT

k

)s is the error covariance with ζk, which will be discussed
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in the next two sections. There will be two components of the error covariance. The first component,(
δζ̃kδζ̃

T
k

)s

, is the error covariance of the least squares solution and is discussed in the next section. The

second component,
(
δζ̂kδζ̂

T
k

)s

, is an estimate of the error covariance for cloud clearing ζ parameters from
the radiance residuals and is discussed in the second section. The total error covariance will be given by(

δζk · δζT
k

)s
= MAX

[(
δζ̂kδζ̂

T
k

)s

,
(
δζ̃kδζ̃

T
k

)s]
(7.68)

7.5 Quality Indicators for Cloud Clearing

We can utilize the fitting parameters and error estimate to compute a number of useful parameters for Quality
Assurance (QA). When the QA indicators exceed a threshold the cloud cleared radiances are assumed to be
bad.

The amplification factor, discussed above, is an indicator of difficulty in cloud clearing. If there is a low
cloud contrast among the FOV’s or the clearest FOV is quite cloudy then the amplification factor will be
high. For the AIRS 9-FOV cloud clearing the amplification factor ranges from 1

3 to numbers that can be
quite large (see Fig. 7.8).

Other tests are discussed below. The residual of the least squares fit (ETAREJ) and an effective ampli-
fication factor that takes into account the error in the η parameter itself help to find cases where the least
square fit was poorly determined.

We can test the QA indicators on the 1st cloud clearing; however, this cloud clearing is usually derived
before any infrared surface parameters are solved for. Therefore, it is desirable to test some the QA indicators
on the 1st cloud clearing and all of the indicators on the final iteration of cloud clearing. The QA indicators
and appropriate sections for discussion are given in the table below.

rspare rejthresh
parameter index index Section

ETAREJ(1st) 24 24 7.5.1
A(1st) 25 25 7.3.2

Aeff (1st) 14 24 7.5.2
ETAREJ(2nd) 3 1 7.5.1

A(END) 6 16 7.3.2
Aeff (END) 15 17 7.5.2
fzeta(END) 18 19 7.5.3
rzeta(END) 19 20 7.5.4

dT(2) 8 3 7.5.5
BTAMSU 7 2 7.5.6

7.5.1 ETAREJ: The cloud clearing residual

The quality of the cloud clearing can be estimated by how well the clear estimate, Rs
n,EST , and the cloud

clear radiances, Rs
n,CCR, agree. We use the same weighting as was used for the determination of the η′s and

convert the result to brightness temperature.

etarej =

√√√√√√√√√
∑
n

(
Ns

n,n

)−1 ·
(
Rs

n,EST −Rs
n,CCR

)2

∑
n

(
Ns

n,n

)−1 ·
(

∂Bν0(n)

∂T

∣∣∣∣
B−1

ν [Rs
n,EST ]

)2 (7.69)
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The value of etarej will be used as a rejection criteria. The value is a pseudo brightness temperature residual
and we currently reject if this value exceeds a threshold, specified by namelist, on the initial cloud clearing
retrieval (based on microwave clear estimate) and after the statistical rejection step ( step # 12 in Table 3).

7.5.2 Aeff: Effective cloud clearing amplification factor

Another parameter uses the diagonal of Eqn. 7.67 to test the quality of cloud clearing. Channel used for
the surface retrieval are most susceptible to cloud clearing errors. In fact, errors in cloud clearing tend to
be related to errors in the surface retrieval. As a test of our susceptibility we use the RMS of a ratio cloud
clearing error (Eqn. 7.67) to noise for the infrared channels used in the surface retrieval.

Aeff ≡

√√√√√√ 1
NsurfIR

NsurfIR∑
i=1

(
δRs

n(i),CCR ·
(
δRs

n(i),CCR

)T
)

(
NE∆Nn(i)

)2 (7.70)

This parameter is an effective amplification factor which includes errors associated with spectrally cor-
related errors due to errors in ζ. It can be used in two important ways

1. After the final cloud clearing Aeff can be used a rejection test. If the value of Aeff > 8 then the
retrieval is rejected.

2. After the first cloud clearing Aeff can be used as a threshold for determining whether to use a mi-
crowave retrieval (preceding cloud clearing) or infrared regression retrieval (which used first cloud
cleared radiances). This is important as this retrieval is used as the first guess for physical retrievals to
follow. If the cloud clearing error is large these physical retrievals will not alter the first guess in low
signal-to-noise regions. The infrared regression implicitly believed the cloud cleared radiances 100% so
that in low signal-to-noise domains we will introduce significant errors. Two important portions of the
infrared retrieval are affected.

• The portion of the temperature profile, T (p), below the clouds is affected by a poor cloud clear-
ing. The microwave, TM (p), and infrared regression, T I(p), temperature retrievals are blended
according to

f1 = MAX
[
MIN

(
Aeff − b1

b2
, 0.0
)
, 1.0
]

(7.71)

f2(p) = MAX
[
MIN

(
(p− p1)

MIN(p2, Ps)− p1
, 0.0
)
, 1.0
]

(7.72)

T (p) = T I(p) + f1 · f2(p) ·
(
TM (p)− T I(p)

)
(7.73)

Currently for AIRS, b1=2.5, b2=4.0, p1=300, p2=1100. NOTE that if (Aeff ≤ b1) the infrared
regression is used without blending and if (Aeff ≥ b1 + b2) the microwave retrieval is used without
blending.

• The skin temperature can be adversely affected by a poor cloud clearing. Aeff can be as a
threshold for using a microwave or infrared skin temperature, Ts, for a first guess. Currently, this
is not used.

f1 = MAX
[
MIN

(
Aeff − b1

b2
, 0.0
)
, 1.0
]

(7.74)

Ts = T I
s + f1 ·

(
TM

s − T I
)

(7.75)
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7.5.3 fzeta: Estimate of the amount of cloud clearing

For a one cloud formation the value of ζ1 is large and the remaining ζ’s are all at the noise level. For
multiple cloud formations the remaining zeta’s are significant, but typically much smaller. Typically, the
zeta’s diminish rapidly, that is, ζ1 � ζ2 � ζ3 � ζ4.

The cloud clearing equation in transformed space is given by

Rs
n,CCR = Rn +

(
Ss

n,j · Us
j,k

) · ζs
k (7.76)

We can compute the cloud cleared radiances due to the most significant ζ term

Rs
n,CCR (ζ1) = Rn +

(
Ss

n,j · Us
j,1

) · ζs
1 (7.77)

and difference this from the pivot element, that is the average of the observed radiances to obtain an estimate
of the cloud clearing effect. We use the window region because this region is most sensitive to clouds.

fzeta ≡
I∑

i=1

(
Rn(i),CCR (ζ1)−Rn

)(∂Bν0(n)

∂T

∣∣∣∣
B−1

ν [Rs
n,EST ]

)−1

for 800 < f(n(i)) < 900 cm−1 (7.78)

7.5.4 rzeta: Estimate of the amount of cloud clearing due to multiple cloud
formations

Multiple cloud formations are more difficult to solve than single cloud formations. A useful parameter is the
amount of cloud clearing due to multiple formations. Again, we use the cloud cleared radiances computed
from the 1st ζ and difference it from the cloud cleared radiances determined from all the ζ’s.

rzeta ≡
I∑

i=1

(
Rn(i),CCR −Rn(i),CCR (ζ1)

)(∂Bν0(n)

∂T

∣∣∣∣
B−1

ν [Rs
n,EST ]

)−1

for 800 < f(n(i)) < 900 cm−1

(7.79)

7.5.5 dT(2): Bad temperature profiles

We can utilize the products derived from cloud cleared radiance and the products used to compute the cloud
cleared radiance estimate to see if the cloud cleared products show signs of cloud contamination. First, we
utilize the difference of the temperature profile used to derive the value of Rs

n,EST and the temperature profile
derived from the cloud cleared radiances to find errant temperature profiles. It doesn’t matter if the clear
estimate is wrong or the cloud cleared radiances are wrong⇒ if there is a difference then something is wrong.
We take the RMS of the differences in the bottom 2-km’s.

dT (2) =
2 km∑
z=0

(TI(z)− TA(z))2 (7.80)

where TA(z) is the temperature profile from the AMSU instrument alone and TI(z) is the temperature profile
determined from the infrared (i.e., cloud cleared radiances). The values of

7.5.6 BTAMSU: Predicting AMSU radiances

We can also utilize the complete infrared state, as determined from the cloud cleared radiances to compute
AMSU brightness temperatures using the forward model. If these disagree with the observed radiances then
either the AMSU or cloud cleared radiances are in error and the profile should be rejected.
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7.6 Computing the cloud clearing error estimate due to cloud for-
mations solved for

The covariance error matrix of the solved components of ζ,
(
δζ̃kδζ̃

T
k

)s

, can be determined from Eqn. 7.52.

The error in ζ is given by substitution of the error estimate of
(
Rs

n,EST −Rn

)
into Eqn. 7.52 and then

RSS’ing the components. Noting that,

• (ABC)′ ≡ C ′B′A′

• W s
n,n is square symmetric and is equal to its transpose

• The error covariance of
(
Rs

n,EST −Rn

)
, written temporarily below as δRδR′, is equal to

(
W s

n,n

)−1 used
in the information content analysis

• recall the definition of λs
k in Eqn. 7.41

If the error estimate in
(
Rs

n,EST −Rn

)
is written as δR then

(
δζ̃kδζ̃

T
k

)s

≡ φs
k

λs
k

· (Us
k,j

)T · (Ss
j,n

)T ·W s
n,n · δR · δR′ ·W s

n,n · Ss
n,j · Us

j,k

(
φs

k

λs
k

)′
(7.81)

=
φs

k

λs
k

· (Us
k,j

)T · (Ss
j,n

)T ·W s
n,n · Ss

n,j · Us
j,k

(
φs

k

λs
k

)′
(7.82)

=
φs

k

λs
k

· λs
k ·
(
φs

k

λs
k

)′
(7.83)

(
δζ̃kδζ̃

T
k

)s

=
(φs

k)2

λs
k

=
1
λs

k

fork = 1, Nζ (7.84)

7.7 Computing the cloud clearing error estimate due to cloud for-
mations NOT solved for

The fact that we chose not to allow certain eigenfunctions (by setting φs
k = 0) into the solution can introduce

errors. For example, imagine if we had set λc →∞ all the values of ζk. Then φs
k would be zero, Rs

n,CCR = Rn,

and δRs
n,CCR · δ

(
Rs

n′,CCR

)T = In,n′/NF ; however, the real error in cloud clearing would be very large.
Another estimate of the error in the cloud clearing ζ parameters can be computed from the radiance

residuals of the channels used in the cloud clearing retrieval,
(
Rs

n,EST −Rs
n,CCR

)
. Since the cloud clear

radiance residual was already minimized, the RSS of the residual is the only useful statistical measure. Thus
we can estimate the error of the ζ parameters in Eqn. 7.52 as follows

(
δζ̂kδζ̂

T
k

)s

= Zs′
n,k ·

(
1
λs

k

)2

Zs
k,n

�
∑

n

(
1
λs

k

Zs
k,n

)2

(7.85)
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where,
Zs

k,n ≡
(
Us

k,j

)T · (Ss
j,n

)T ·W s
n,n ·

(
Rs

n,EST −Rs
n,CCR

)
(7.86)

and the subset of channels used in the summation must be the same cloud clearing channels that were used
to compute λs

k.
For significant eigenfunctions (λs

k ≥ 10−3), the diagonal component can be given by(
δζ̂kδζ̂

T
k

)s

=
(

1
λs

k

)2

·
((
Us

k,j

)T · (Ss
j,n

)T ·W s
n,n

)2

· (Rs
n,EST −Rs

n,CCR

)2 (7.87)

We could add this error to the ζ parameters that were not solved for

(
δζk · δζT

k

)s
=
(
δζ̃kδζ̃

T
k

)s

+ (1− φs
k) ·
(
δζ̂kδζ̂

T
k

)s

(7.88)

however, if we underestimate the errors in Rs
n,EST they will propagate into an underestimate of

(
δζ̃kδζ̃

T
k

)s

.

The radiance residual,
(
Rs

n,EST −Rs
n,CCR

)
, can also be used to verify that the error in components solved

for is reasonable. (
δζk · δζT

k

)s
=
(
δζ̃kδζ̃

T
k

)s

+ MAX
[((

δζ̂kδζ̂
T
k

)s

−
(
δζ̃kδζ̃

T
k

)s)
, 0
]

(7.89)

This is what is done with the namelist variable zetaerrtype=2, which is the system employed in the AIRS
Science Team Code in v3.0, v4.0, and v5.0

Table 7.3: Namelist variable zetaerrtype: modes of operation
zetaerrtype method

1
(
δζ̂kδζ̂

T
k

)s

(1) = (ETAREJ2 - (A*NEDT)2) / (RMS(UT ST )/dBdT)
2 Eqn. 7.87 & Eqn. 7.89
3 Eqn. 7.87 & Eqn. 7.89
4 χ2/λ
5 χ2/λ

7.8 Effect of Radiance Bias Adjustment (Tuning) on Cloud Clear-
ing

7.8.1 When tuning is correct

Tuning only matters when observations are compared with computed quantities. It is inappropriate to
assume that tuning applies independently to observed or computed quanities. In cloud clearing a clear
estimate, Rclr = f(X), where f() is the forward computation and X is an estimate of the atmospheric state,
initially from the microwave solution, is used to derive a cloud cleared extrapolation parameter.
The cloud clearing parameter, η, is derived from a set of channels. If only one channel, n, and two field of
views (FOV’s) of cloudy data, R1(n) and R2(n), were used then the value of η determined when no tuning
is applied would be

η0 =
Rclr(n)−R1(n)
R1(n)−R2(n)

(7.90)

Cloud clear radiance for any channel, Rccr(m), is then given by
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Rccr(m) = R1(m) + η0 · (R1(m)−R2(m)) (7.91)

When there are differences between observed and computed radiances the value of η0 has been corrupted.
Part of the cloud contrast, R1(n)−R2(n), has been used to fit to the difference between Rclr and R1 in Eqn.
7.90. All channels will be affected by this, therefore, to eliminate the corruption of η due this difference a
tuning is applied to Eqn. 7.90 as follows

η =
Rclr(n)−R1(n)− tuning(n)

R1(n)−R2(n)
(7.92)

When we compute the cloud clear radiance for the fitting channel we obtain

Rccr(n) = R1(n) + η · (R1(n)−R2(n)) (7.93)
= Rclr(n)− tuning(n) (7.94)

Notice that once again the tuning is only applied to the difference of observed minus computed quantities
since Rccr, R1, R2 are all observed quanitities and Rclr is a computed quantity. The cloud cleared radiance
for all channels can be computed without corruption. Therefore, in the context that the tuning values are
correct, the value of η has eliminating tuning from the equation.

Rccr(m) = R1(m) + η · (R1(m)−R2(m)) (7.95)

In a retrieval the cloud cleared radiances are once again compared to a computed value to adjust the atmo-
spheric state. If we did a retrieval operator, g, using our cloud clearing predictor channel we see that the
cloud cleared radiances act as if they are not tuned.

∆X = g · (Rccr(n)− f(X) + tuning(n)) (7.96)
= g · (Rclr(n)− tuning(n)− f(X) + tuning(n)) (7.97)
= g · (Rclr(n)− f(X)) (7.98)

(7.99)

Notice that the cancellation of tuning only occurs if the forward models used to compute the clear estimate,
Rclr, and estimate of the atmospheric state, f(X), are the same. Otherwise, one could say that tuning has
entered into the cloud cleared radiances. Since the contamination has been removed from the determination
of η all cloud cleared radiances in other channels are not affected by differences between computed and
observed radiances.

7.8.2 When tuning is NOT correct

If tuning is incorrect the whole situation changes. The value of η is corrupted by the tuning parameter. The
corruption is of the form

η =
Rclr(n)−R1(n)− tuning(n)

R1(n)−R2(n)
(7.100)

= η0 − tuning(n)
R1(n)−R2(n)

(7.101)

therefore, a fraction of the cloud contrast, determined solely from differences of observed radiance(s) R1(n)−
R2(n), is interpreted as tuning. This means the cloud clearing radiances for all channels have been corrupted
by the tuning. The tuning(n) has introduced itself into the cloud cleared radiance for channel m.
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Rccr(m) = R1(m) + η0 · (R1(m)−R2(m))− tuning(n) ·
(
R1(m)−R2(m)
R1(n)−R2(n)

·
)

(7.102)

This is why it is important to be sure that tuning is correct. It can contaminate all radiances.

7.9 An example of cloud clearing with real AIRS data

The upper panel in Fig. 7.9 shows the average of nine AIRS FOV’s (RED) and brightness temperature
computed from the ECMWF analysis (BLUE). The lower panel shows the difference. Agreement in window
regions indicates there are NO clouds. Other differences are probably meteorological. In Fig. 7.10 the top
two panels are the same as the previous figure. The lower panel shows the AIRS cloud cleared product
(BLACK) has same agreement as clear scene (reproduced as GREEN in this figure).

Statistically, we can look at root-mean-square (RMS) and biases with respect to the forecast. These are
shown in Fig. 7.11 and Fig. 7.12, respectively. In these figures, 1350 retrievals are utilized in a single AIRS
“granule”. These measurements are over a relatively clear region of the Pacific ocean on Sep. 6, 2002.

Figure 7.9: An example of a clear AIRS measurement made in the Pacific Ocean on Sep. 6, 2002 (Granule
100, AMSU Scan #28 FOV #14).
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Figure 7.10: An example of a scene 330 km away with about 30% cloudiness (9/6/02 AMSU Scan #32, FOV
#8).

Figure 7.11: Radiance RMS differences. RED curves are CLEAR scenes, BLUE curves have CLOUDS. Top
panel is R(ECMWF) - <R(AIRS)>9. Middle panel is the R(ECMWF)-R(CCR). Bottom panel is R(CCR)
minus the R(RETRIEVAL).
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Figure 7.12: Same previous figure, but the BIAS of the difference between AIRS radiances and radiances
computed from ECMWF or the RETRIEVAL are shown
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7.10 Local Angle Correction

One of the assumptions about cloud clearing is that the only difference between adjacent FOV’s is the amount
of clouds in each FOV. In AIRS and CrIS there is a 1.1◦ difference in view angle between FOV’s along the
scan direction. The correction of the cloudy radiances to a common angle is called the local angle correction
(LAC).

The AIRS instrument scans at an angle, β, with respect to the nadir. The step size is constant and the
angular separation between spots is given by, ∆β = ±1.1◦. The zenith angle, θ, is the angle measured at
the Earth’s surface, between local zenith and the spacecraft. It is not constant due to the projection of the
Earth’s curved surface.

The nine AIRS/HSB spots associated with the single AMSU spot can be numbered as follows, where n
is the channel ID number (n=1 to N for AIRS (N=2378) and n=N+1,N+4 for HSB)

R1(n) R2(n) R3(n)
R4(n) R5(n) R6(n)
R7(n) R8(n) R9(n)


 (7.103)

R2(n), R5(n), and R8(n) are all located at the same zenith angle θ(k) where k as the AMSU footprint number
(1 ≤ k ≤ 30). R1(n), R2(n), and R3(n) are located at zenith angle θ(k) − δθ−(k) and R3(n), R6(n), and
R9(n) are located at zenith angle θ(k) + δθ+(k).

In general, δθ−(k) �= δθ+(k). Values of δθ−(k) and δθ+(k) are given for AMSU spots k = 1, 30 for the
EOS 705 km orbit in Table 1.

Table 7.4: change in secant angle with AIRS footprint
k β5(k) θ5(k) δθ−(k) δθ+(k)

1,30 47.85 55.421 1.434 1.456
2,29 44.55 51.176 1.381 1.397
3,28 41.25 47.073 1.343 1.354
4,27 37.95 43.075 1.315 1.323
5,26 34.65 39.154 1.293 1.299
6,25 31.35 35.294 1.276 1.281
7,24 28.05 31.481 1.262 1.266
8,23 24.75 27.706 1.251 1.255
9,22 21.45 23.961 1.243 1.246

10,21 18.15 20.239 1.236 1.238
11,20 14.85 16.536 1.231 1.233
12,19 11.55 12.847 1.227 1.228
13,18 8.25 9.169 1.224 1.225
14,17 4.95 5.499 1.222 1.223
15,16 1.65 1.832 1.222 1.222

For each AIRS footprint, j, the derivative of the calculated radiance could be used to determine the sensitivity
of a channel to zenith angle. The sensitivity is a strong function of wavenumber, ν(n), because the narrowness
and height of the channel’s weighting function varies with molecular absorption. In addition, the channel’s
weighting function is also affected by the atmospheric state. The atmospheric state for spot j within AMSU
footprint k is denoted by X(j, k), and is specified by

• the temperature profile, T (p),

• the moisture profile q(p),

• the ozone profile, O3(p),
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• the surface skin temperature, Ts,

• the surface IR emissivity, ε(ν),

• the surface IR reflectance, ρ(ν),

• the cloud top pressure(s), Pcld(Ncld),

• the cloud fraction(s), α(Ncld),

• the cloud emissivity, εcld(ν,Ncld),

• the cloud reflectivity, ρcld(ν,Ncld),

• the cloud transmissivity, τcld(ν,Ncld),

• and the solar zenith angle,θ0(k).

If the atmospheric state is known, then the finite difference derivative for AIRS footprint j within AMSU
footprint k is given by

∆Rn(j, k) ≡ −δθj(k) · ∂R(n)
∂θ

∣∣∣∣
θ(k)+δθj(k)

(7.104)

= Rcalc(ν(n),X(j, k), θ(k))−Rcalc(ν(n),X(j, k), θ(k) + δθj(k)) (7.105)

where Rcalc is the forward radiative transfer calculation and δθj(k) is given by

δθj(k) = −δθ−(k) for j = 1, 4, 7
δθj(k) = 0.0 for j = 2, 4, 8

δθj(k) = +δθ+(k) for j = 3, 6, 9 (7.106)

To correct Rn(j, k) for the effects of zenith angle variation over the AMSU footprint then

Rn(j, k) = Rn(j, k) + ∆Rn(j, k) (7.107)

Of course, the state X(k, j) is not known until after a retrieval so that the correction term must be calculated
from an approximate state, thus Eqn. 7.104 will have error introduced by uncertainties in X(k, j). There are
3 possible avenues to explore with the AIRS/AMSU/HSB system

1. To perform three 3-spot retrievals and average the results. Each 3-spot retrieval would use the spots
are the same angle, so that there is no IR correction necessary. Results for the 9 spot could be
averages of the 3 retrievals. This would take about 3X the present execution time. The AMSU-A
spot, corresponding to the AIRS 9-spots would have to be corrected to the zenith angle of the 3-spots;
however, this correction is only required once for the 15 AMSU channels and is not an execution time
burden.

2. To calculate the correction within a physical retrieval the proper method would be to perform a single
spot retrieval (regression or physical) for spots 1,4,7,3,6,9 and then use the retrieved state, X(j, k), to
calculate ∆Rn(j, k) from Eqn. 7.104. For the AIRS final product algorithm ≈ 2200 channels require
cloud clearing (2378 - 150). Alternatively, the MIT AMSU/HSB retrieval (T (p, k), q(p, k)) plus an IR
cloud retrieval (Pcld(k), εcld · α(k, j)) could be used to define the initial state for the nine spots.

• The most obvious calculation would require 9·2200=19800 forward calculations. A typical GSFC
retrieval calls the forward IR calculation about 2000 times (600 surface, 600 T(p), 600 q(p),
200 O3(p)). Thus, the correction would require 10X the resources of the physical retrieval. For
only channels used, the resources are still prohibitive, since there are still about 2000 forward
calculations required or 1X a retrieval.
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• It is possible to speed up this calculation if we assume that all nine spots have the same atmospheric
profiles and only differ in surface and cloud properties. Then there would only be 3 transmittance
calculations and 12 radiative transfer calculations required per AMSU spot.

• and finally, the rapid algorithm could be used to calculate the derivative w.r.t. θ directly. The
result would be about 2·2200 forward calculations which would take about as long as a retrieval
for all the channels and about 10% for only channels used.

3. Another solution is to calculate a regression matrix for spot (j, k). There are 15 unique values of k and
2 unique values of j so that 30 regression matrices would need to be calculated. A correction factor for
channel n could be calculated directly from the radiances using regression

∆Rn(j, k) = An,m ·Rm(j, k) (7.108)

where the index m refers to a set of channels used as predictors of the atmospheric state which can
include all n of the IR channels as well as AMSU and HSB channels.

For an ensemble of atmospheric states, Xl(j, k), where l is the case the regression matrix equation for
a given spot j within AMSU footprint k is given by

∆Rn,l = An,m ·Rm,l (7.109)

where ∆Rn,m is calculated using Eqn. 7.104 and Rm,l is given by Rcalc(ν(m),Xl(j, k), θ(k) + δθj(k))
and the least squares solution for the regression matrix, An,m is given by

∆Rn,l ·R′
l,m = An,m ·Rm,l ·R′

l,m (7.110)

An,m = ∆Rn,l ·R′
l,m ·

[
Rm,l ·R′

l,m

]−1 (7.111)

In the regression equation (Eqn. 7.108) the all the measured radiances, Rm(j, k), are used to determine
the correction, ∆Rn(j, k) for each channel and the measured radiances should contain the same infor-
mation of the retrieval in step # 1. This method has been employed by NOAA for the HIRS instrument
and works well; however, the outer footprints have errors. For AIRS the channels are narrower, which
should improve the regression method because

• There are more pieces of information contained in the predictors (radiances).

• The narrower channel should make the correction more linear (closer to monochromatic).

• eigenvector decomposition could be used to reduce the dimension of the arrays (2200 chl’s would
require ≈ 21 MB of memory to load An,m). A transformation matrix Up,m would be used to
calculate P ≈ 50 principal components which are then used in turn to find a regression matrix,
An,p. The memory allocation for Um,p and An,p would be 1 MB. The transformation matrix is
found from

λp = Up,m ·Rm,lR
′
l,mU

′
m,p (7.112)
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Figure 7.13: Larry McMillin upon retirement in June of 2005 (courtesy of Larry McMillin)

7.10.1 The NOAA Regression Approach

NOAA used an eigenvector regression approach for the AIRS local angle correction. This methodology was
developed by Larry McMillin for the AIRS project.

First, 100 eigenvectors are computed using the m = 1, 1270 “good” AIRS channels, Zj
m,i, for the 15

golfball angles (i.e., assumes scan symmetry) with 2 correction matrices (“inner” FOV and “outer” FOV)
per angle or j = 1, 30 “angles”. If k is the index for the AIRS FOV (k = 1, 90) within an AIRS scan line to
be corrected, then j can be determined as follows

if(MOD(k,3).eq.2) .... angle correction is NOT necessary, exit

if(k.gt.45) then
j1 = k-45

else
j1 = 46-k

endif
j = 2*j1/3 + MOD(j1,3)

k: 1, 2, 3, 4, 5, 6, ... , 85, 86, 87, 88, 89, 90
j1: 45, 44, 43, 42, 41, 40, ... , 40, 41, 42, 43, 44, 45
j: 30, -, 29, 28, -, 27, ... , 27, -, 28, 29, -, 30

For M = 1270 channels this file was written as ASCII with a (1x,8f12.7) format so that the file size
should be (12*1270 + 2*(1270/8+1) * 100 eigenvectors * 30 sets � 46,674,000 bytes.
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In practice, only 45 of these eigenvectors are used to compute principal component scores.
It is possible for any channel, Rk +n(m), to be bad on a given scan line. Operationally, we need to “fix”

bad channels we can use the eigenvectors to predict that channel. For the AIRS processing a channel is good
if

1. Channel radiance is not marked by by L1b processing, Rk
n(m) > −990.

2. Channel is not out of range, Rk
n(m) > −10·NE∆Nn(m).

3. Channel passes all QA tests.

αj
m =

M∑
m=1

(
Rk

n(m)

NE∆Nn(m)
−Xj

m

)
for GOOD channels (7.113)

= = 0 for BAD channels (7.114)

Now compute an estimate of the argument, αj
m for the BAD channels

βj
m = αj

m for GOOD channels (7.115)

βj
m =

(
M∑

m=1

αj
m · Zk

m,i

)
·
(
Zj

m,i

)T

for BAD channels (7.116)

(7.117)

Now, we can solve for the principal component scores using all the channels. We attempted to limit the
values of β to a reasonable range; however, tests such as −.3Xj

m ≤ βj
m ≤ .3Xj

m turned out to be a bad idea
because clouds can cause a wide dynamic range in the values of β.

P j
i =

M∑
m=1

βj
m · Zj

m,i for i = 1, I (7.118)

The training value of Xj
n is also from a file (convtrai.xxx). For M = 1270 an ASCII file with a format

of (1x,8f10.5) so that the file size should be (10*1270 + 2*(1270/8+1) * 30 sets � 390,540 bytes
For daytime cases an extra predictor is added to the P j

i array. For the AIRS FOV to be corrected the
solar zenith angle is given by θk

� and θc
� is the solar zenith angle of the center FOV (center FOV’s are 2, 5,

8, . . ., 44, 47, . . ., 83, 86, 89),

P j
46 = cos

( π

180
· θk

�
)
− cos

( π

180
· θc

�
)

(7.119)

The regression coefficients consist of a zero offset, Bj
n, for all 2378 channels and a regression matrix, Aj

n,i

δRk
n = Bj

n +
I∑

i=1

Aj
n,i ·

(
P j

i − P0j
i

)
(7.120)

where I = 45 for night and I = 46 for day.
The regression files are ASCII with a format of (1x,8e15.7). This file is read in as a record of 2378

and then 2378 records of 45 coefficients each so that the size is (15*2378 + 2*(2378/8+1) + 45*15*2378 +
2*(45/8+1)*2378)*30 � 50,098,560 for nighttime and the size is (15*2378 + 2*(2378/8+1) + 46*15*2378 +
2*(46/8+1)*2378)*30 � 51,168,660 for daytime.

The correction is applied to the cloudy radiances as
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R̂k
n = Rk

n − δRk
n (7.121)

In the table below the ASCII filenames and sizes are summarized. In addition, the minimum amount of
memory necessary to load all the files (NOTE: only 45 eigenvectors are necessary). “xxx” means there are 2
files, one xxx=day and one where xxx=ngt.

Table 7.5: Size of local angle correction files for AIRS
file memory memory

symbol filename size dimension size
m(n) channels.beused.dat 28,536 2378 9,512

NE∆N(n) AIRS.angcor.scaling 36622 2378 9,512
Zj

m,i eigenvai.xxx.dat 2 x 46,674,000 2 x 30 x 1270 x 45 2 x 6,858,000

Xj
m covmtrai.xxx.dat 2 x 390,540 2 x 30 x 1270 2 x 154,400

P0j
i xmean airs.day.dat 21,060 30 x 46 5,520

P0j
i xmean airs.ngt.dat 20,610 30 x 45 5,400

Bj
n & Aj

n,i coef airs.day.dat 51,168,660 30 x 2378 (1 + 46) 13,411,920
Bj

n & Aj
n,i coef airs.ngt.dat 50,098,560 30 x 2378 (1 + 45) 13,126,560

195,503,128 40,613,224
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7.12 A little history: Optimization of η’s for a single cloud forma-
tion

This document was originally written on June. 19, 1995. At that time the idea was to use the cloud clearing
equation and to look for the optimal η’s by rotation.

For each field of view (FOV), k, we will assume that the measured radiance is a combination of a clear
radiances for each field of view, Rclr,k, and Nc cloud radiances for each field of view, Rcld,k,j and factors
representing the percentage of cloudiness in each FOV and for each cloudy type, αk,j . The outgoing radiance
for Nc cloud formations can be written as:

Rk(ν) =


1−

Nc∑
j=1

αk,j


 ·Rclr,k(ν) +

Nc∑
j=1

αk,j ·Rcld,k,j(ν) (7.122)

The α’s are not a function of wavenumber, ν. If only one type of cloud formation exists in all the FOV’s then

Rk(ν) = (1− αk)Rclr,k(ν) + αkRcld,k(ν) (7.123)

For the case of 2 FOV’s (i.e., k = 1, 2 in Eqn. 7.123) there are two equations which can be combined. If we
assume that Rclr,1 = Rclr,2 and Rcld,1 = Rcld,2 then the clear radiance can be found from the 2 FOV’s.

Rclr = R1 +
α1

α2 − α1
(R1 −R2) = R1 + η · (R1 −R2) (7.124)

η ≡ α1

α2− α1
(7.125)

Note that we have dropped the specific notation for wavenumber dependence and it is understood that the
radiances are functions of wavenumber, while the α’s and η’s are not.
In general for N FOV’s and Nc = N − 1 cloud types where there is one Rclr and Nc cloud types with
Rcld,j (j = 1, Nc), it can be shown (Chahine, 1977) that

Rclr = R1 +
N−1∑
k=1

ηk · (R1 −RN+1−k) (7.126)

In the case of N FOV’s and one cloud type it is not obvious what the simultaneous solution for the η’s
should be. However, we do know that there are N − 1 solutions given by the cases where all of the η’s,
except one, are zero (i.e., the problem reduces to the form of Eqn. 7.124).

ηk =
α1

αN+1−k − α1
=

Rclr −R1

R1 −RN+1−k
and ηj = 0 for k �= j (7.127)

The error amplification factor, W , can be found by rewriting Eqn. 7.127:
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Rclr =

(
1 +

N−1∑
k=1

ηk

)
·R1 −

N−1∑
k=1

ηk ·RN+1−k (7.128)

W =

√√√√(1 +
N−1∑
k=1

ηk

)2

+
N−1∑
k=1

η2
k (7.129)

7.12.1 Special Case: 3 FOV’s with 1 cloud type

For three fields of view, with a single cloud type the clear radiance will be given by

Rclr = R1 + η1(R1 −R3) + η2(R1 −R2) (7.130)

η1 =
α1

α3 − α1
=
Rclr −R1

R1 −R3
and η2 = 0 (7.131)

η2 =
α1

α2 − α1
=
Rclr −R1

R1 −R2
and η1 = 0 (7.132)

W =
√

(1 + η1 + η2)2 + η2
1 + η2

2 (7.133)

These η’s are not unique solutions; however, all solutions must be linear combinations of these, so we
could write the expression for Rclr as

Rclr = R1 + fη1(R1 −R3) + (1− f)η2(R1 −R2) (7.134)

where f can be any value, however, we will look for a value which will minimize the noise amplification
parameter. When we have one cloud type we can write η2 in terms of η1.

η2 =
η1
β

or β =
η1
η2

=
α2 − α1

α3 − α1
=
R1 −R2

R1 −R3
(7.135)

Rclr = R1 + f · η1 · (R1 −R3) + (1− f)
η1
β

(R1 −R2) (7.136)

We can define new η’s such that

Rclr = R1 + η′1 · (R1 −R3) + η′2(R1 −R2) (7.137)

where η′1 = f · η1 and η′2 = (1− f) · η1/β . The error amplification will be

W =
√

(1 + η′1 + η′2)2 + η′21 + η′22 (7.138)

W =

√(
1 + f · η1 + (1− f) · η1

β

)2

+ f2 · η2
1 + (1− f)2 · η

2
1

β2
(7.139)

W =

√(
(1 +

η1
β

) + f · η1 · (1− 1
β

)
)2

+ f2 · η2
1 + (1− 2f + f2) · η

2
1

β2
(7.140)

W =
√
q0 + q1 · f + q2 · f2 (7.141)

q0 =
(

1 +
η1
β

)2

+
η2
1

β2
(7.142)
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q1 = 2 · η1 ·
[(

1 +
η1
β

)
·
(

1− 1
β

)
− η1
β2

]
(7.143)

q2 = η2
1 ·
[
1 +

1
β2

+
(

1− 1
β

)2
]

(7.144)

∂W

∂f
=

1
2
(
q0 + q1 · f + q2 · f2

)− 1
2 · (q1 + 2 · f · q2) = 0 (7.145)

and the non-trivial solution for the minimum is

f =
−q1
2 · q2 =

−
[(

1 + η1
β

)
·
(
1− 1

β

)
− η1

β2

]
η1 ·
[
1 + 1

β2 +
(
1− 1

β

)2
] (7.146)

η′1 = f · η1 =
−
[(

1 + η1
β

)
·
(
1− 1

β

)
− η1

β2

]
[
1 + 1

β2 +
(
1− 1

β

)2
] (7.147)

η′2 =
(1− f)
β

· η1 (7.148)

Table 7.6: Example Solutions for f
α1 α2 α3 β = η1/η2 η1 f η′1 η′2 W (f) W (f = 0) W (f = 1)
35 50.0 65 0.500 1.167 1.1429 1.333 -0.333 2.427 4.069 2.461
35 42.5 65 0.250 1.167 1.1758 1.372 -0.821 2.227 7.341 2.461
35 57.5 65 0.750 1.167 0.8681 1.013 +0.205 2.447 2.992 2.461
35 62.0 65 0.900 1.167 0.6468 0.755 +0.458 2.382 2.637 2.461
10 20.0 50 0.250 0.250 1.5385 0.385 -0.538 1.074 2.236 1.275
10 50.0 65 0.727 0.182 1.4742 0.268 -0.119 1.186 1.275 1.196
10 65.0 70 0.917 0.167 0.8346 0.139 +0.030 1.178 1.196 1.179
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Figure 7.14: Optimal rotation fraction determined from Eqn. 7.146

Figure 7.15: Same as Fig. 7.14 except zooming into origin
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Figure 7.16: Percent improvement in noise amplification by rotating solution of η’s in Fig. 7.14

Figure 7.17: Same as Fig. 7.16 except zooming into origin
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7.12.2 Determination of Single Cloud Type from Observation

Given radiances in three fields of view, R1, R2, R2 where R1 > R2 > R3 we can calculate a value of β at a
number of frequencies, i.

βi =
Ri,1 −Ri,2 +Ni,1−2

Ri,1 −Ri,3 +Ni,1−3
(7.149)

In the calculation there is an additional constraint that each channel must satisfy the two conditions below:

Ri,1 −Ri,3 > 3 ·
√

2 ·NE∆N (7.150)

Ri,1 −Ri,2 > 3 ·
√

2 ·NE∆N (7.151)

We will drop the explicit notation for frequency and define a new function, Ek as follows:

Ek ≡ R1 −Rk = (1− α1) ·Rclr + α1 ·Rcld − (1− αk) ·Rclr − αk ·Rcld (7.152)

Ek = (αk − α1) · (Rclr −Rcld) (7.153)

βi =
E2 +

√
2 ·N2

E3 +
√

2 ·N3

(7.154)

We can use the Binomial Series approximation to simplify this equation if E3 �
√

2 ·N .

1
1 + ε

≈ 1− ε, (2− term Binomial Series) (7.155)

βi ≈ (E2 +
√

2 ·N2) · (E3 −
√

2 ·N3)
E2

3

(7.156)

βi ≈ E2 · E3 + E3 ·
√

2 ·N2 − E2 ·
√

2 ·N3 − 2 ·N2 ·N3

E2
3

(7.157)

The weighted average of βi is calculated as

β̄ ≡
∑M

i=1Wi · βi∑M
i=1Wi

(7.158)

where the weighting function, Wi, will be defined later. If there were no noise then each term of βi would be
equal to β̄, therefore,

β̄ =
R1 −R2

R1 −R3
=
E2

E3
(7.159)

and Eqn. 7.157 reduces to

βi = β̄ +
√

2 ·N2

E3
− β̄ · √2 ·N3

E3
(7.160)

In general, the values of N2 and N3 will be statistically equal to the noise equivalent noise, NE∆N . Since
we will sum the βi’s over all the selected channels the expected value of βi will be

βi ≈ β̄ +
√

2 ·NE∆N
E3

·
√

1 + β̄2 (7.161)

If we define the weighting function to be
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Wi ≡ E3 +
√

2 ·NE∆N√
2 ·NE∆N

≈ E3√
2 ·NE∆N

(7.162)

then the standard deviation for β̄ will be equal to

σβ =

√√√√∑M
i=1W

2
i · (βi − β̄)2∑M
i=1W

2
i

=

√√√√√∑M
i=1

(
E3√

2·NE∆N

)2

·
(√

2·NE∆N
E3

√
1 + β̄2

)2

∑M
i=1W

2
i

(7.163)

σβ =
√
M ·

√
1 + β̄2√∑M

i=1W
2
i

(7.164)

then we can define a radiance contrast as the root mean square of the highest contrast radiances, R1 − R3,
weighted by the NE∆N

C =

√∑M
i=1W

2
i

M
=

√√√√∑M
i=1

(
E3√

2·NE∆N

)2

M
(7.165)

Then

σβ =

√
1 + β̄2

C
(7.166)

and the criterea for single cloud type where (R2 −R1) is uncorrelated with (R3 −R1) would be:

σβ · C ≤
√

1 + β̄2 (7.167)

With a small number of channels the value could range from the positive correlated limit to the negatively
correlated limit.

1− β̄ ≤ σβ · C ≤ 1 + β̄ (7.168)

so the conservative test for a single cloud type would be

σβ · C ≤ 1 + β̄ (7.169)
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Chapter 8

Basic Concepts of Sounding

Inverse methods are methods where the direction of inferrence is opposite to the direction of causation, Ian
Enting

8.1 Linearization of the Radiative Transfer Equation

In the typical inversion problem an estimation of the temperature profile is available from models or other
measurements (e.g., radio occultation). The idea is to do a Taylor expansion integrand about a reference
state, X0.

For a temperature retrieval this is accomplished by first linearizing the Planck function a the reference
temperature profile as follows:

T (z) ≡ T 0(z) + ∆T (z) (8.1)

so that

Bν(T (z)) = Bν(T 0(z)) +
∂Bν(T 0(z))

∂T

∣∣∣
T 0(z)

∆T (z) (8.2)

In general, the radiance of the reference state, X0, can be computed. In our example, we will consider
only the atmospheric component of the radiative transfer equation:

R0
ν =

∫ ∞

z=0

Bν(T 0(z)) · ∂τν(X0)
∂z

∂z (8.3)

Everything is known within this equation except the temperature profile correction, ∆T (z). If we insert Eqn.
8.2 into Eqn. 8.3 we get

∆Rν = Rν −R0
ν =

∫ ∞

z=0

(
Bν(T 0(z)) +

∂Bν(T 0(z))
∂T

∣∣∣
T 0(z)

∆T (z)
)
· ∂τν
∂z

∂z − R0
ν (8.4)

which can be simplified

∆Rν =
∫ ∞

z=0

(
∂Bν(T 0(z))

∂T

∣∣∣
T 0(z)

· ∂τν
∂z

)
∆T (z)∂z (8.5)

If we define a kernel function as

K(z, ν) ≡ ∂Bν(T 0(z))
∂T

∣∣∣
T 0(z)

∂τν
∂z

(8.6)

231
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then we can write the linearized radiance transfer equation as

∆Rν =
∫ ∞

z=0

K(z, ν) ·∆T (z)∂z (8.7)

Thus, we will ignore the frequency dependence of the Planck function and we will ignore the temperature
dependence of the transmittance. Note that for un-apodized interferometers and broad band instruments this
expansion is not justified. For broad band channels (e.g., 10’s of cm−1, like MODIS, HIRS, etc.) an effective
Planck function can be computed by integration over the band pass. For an un-apodized interferometer the
side-lobes are significant for 100’s of cm−1. The linearization of the integrand is one of the principal reasons
for use of apodized interferometer spectra.

Equation 8.7 can be approximated by a numerical integral which has the advantage of being solved by
matrix inversion.

∆Rn ≈
NL∑
L=1

(∆z(L) ·K(n,L)) ·∆T (L) = K̃n,L ·∆T (L) (8.8)

The thickness of the layer for the finite difference form is usually absorbed into the definition of K, written
as K̃ above.

8.2 The problem is inherently non-linear

The retrieval of geophysical quantities, such as the atmospheric water, from satellite radiances is highly
non-linear, requiring inversion of the equations of the form

Rn(X) �
∫
ν

Φν

∫
p

B(T (p)) ·
∂ exp

(
−

z(p)∫
z′=∞

∑
i

κi(X, . . .)dz′
)

∂p
· dp · dν (8.9)

Eqn. 8.7 is the linearized radiation transfer equation for the thermal infrared. This equation is a Fredholm
equation of the 1st kind.

One should always remember that Eqn. 8.7 is an approximation and that the real radiative transfer
equation has non-linear components resulting from

a) the temperature dependence of the transmittance,

b) the non-linearity of the Planck function,

c) the down-welling component of the radiative transfer equation.

Therefore, in practice, the linear inversion equation, Eqn. 8.7, must be iterated.

8.2.1 Linearization using Brightness Temperature

Brightness temperature, Θn, is usually more linear with temperature (our core product), provides improved
numerically stability, and is a convenient way to display multi-spectral radiance information.

Θn ≡ B−1
ν0

(Rn) =
α2 · ν0

loge

[
1 + α1ν3

0
Rn

] (8.10)
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8.2.2 Brightness Temperature Difference

Unfortunately, measured radiances can go negative in cold and/or cloudy regions due to random noise.
Usually, only radiance differences, e.g. observations minus computed, are needed in remote sounding so that
a radiance difference, ∆Rn, can be converted to a brightness temperature difference, ∆Θn, as follows

∆Θn � ∆Rn ·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i−1
L

))




−1

(8.11)

See section 1.5.7 for more details.

8.3 A “poor man’s” retrieval approach

Figure 8.1: Example of weighting and kernel functions for AIRS.

We can compute a channels sensitivity by linearizing Eqn. 5.31. In the first panel of Fig. 8.1 the
temperature profile is shown which is used to compute transmittances and brightness temperatures. The
second panel shows the transmittance, τ↑n(p, θ = 0) as a function of pressure. The third panel shows the
weighting function, ∂τn/∂z for some selected AIRS channels. The fourth panel shows the kernel function,
defined by

Kn(z) =
1000
Bν(n)

· ∂Bν(n)

∂T
· ∂τn
∂z

(8.12)

We can use the weighting functions or kernel functions to estimate a what pressure (altitude) the channel is
most sensitive to. This is shown in Fig. 8.2.
And this can give us a quick estimate of the atmosphere by associating the measured brightness temperature
with the level of the atmosphere to which that channel is most sensitive.
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Figure 8.2: Pressure of maximum sensitivity of AIRS channels.

In Fig. 8.3 we show an example of a simple retrieval in which we equate the brightness temperature of
a channel with the physical temperature at the pressure of maximum sensitivity for AIRS channels.
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Figure 8.3: Example of a “poor man’s” retrieval using Θ(n) and P (τ(n)) = 0.5.
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8.4 Weighting Functions

The sensitivity of the integrand in Eqn. 5.34 to small changes in the atmospheric state are useful in deter-
mining a channels primary sensitivity. First we will rewrite the equation so that it is not sensitive to layers
of varying thickness, ∆z(L). In the microwave atmospheric component this is given by

Θa(n) =
NL∑
L=1

ΘL(n) =
NL∑
L=1

T (L) ·∆τ↑n(L, θ) (8.13)

ΘL(n) = T (L) ·∆τ↑n(L, θ) = T (L) · ∆τ
↑
n(L, θ)

∆z(L)
·∆z(L) (8.14)

In the literature the terminology is often confused. The concept of weighting function, contribution
function, and kernel function are often interchanged. In addition, sometimes the functions are normalized by
factors of the Planck function, or the derivatives are taken w.r.t. pressure of loge(p) instead of z.

8.4.1 Temperature Weighting Functions for AMSU

For temperature sounding we take the derivative w.r.t. temperature of the discrete integrand at each level,
L.

∂ΘL(n)
∂T

∣∣∣∣
T (L)

=
∆τ↑n(L, θ)

∆z
(8.15)

The AMSU temperature weighting functions at nadir for the AMSU channels are given in Grody (1993,
pg. 283). The result of this calculation is shown in Fig. 8.4. The peak of the weighting function is a useful
parameter to classify channels and these values are given in Table 25.7 for the AMSU channels.

8.5 Contribution Function

In general, the contribution function for thermal sounding represents the contribution to the atmospheric
radiative transfer, that is, the argument within the integral for the atmospheric component of the radiance.
For a given atmospheric state, X.

Bν(T (p)) · dτ
↑
ν (p,X, θ)
dz

(8.16)

8.6 Kernel Function

In general, the kernel function for thermal sounding represents the sensitivity to the full atmospheric radiance
to a perturbation in the geophysical state, X, is given by

∂

∂X

(
Bν(T (p)) · dτ

↑
ν (p,X, θ)
dz

)
(8.17)
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Figure 8.4: AMSU temperature contribution functions for the AMSU instrument

8.6.1 Temperature Kernel functions

In the introduction to this chapter we derived the the temperature kernel (Eqn. 8.7)

K(z, ν) ≡ ∂Bν(T 0(z))
∂T

∣∣∣
T 0(z)

∂τν
∂z

(8.18)

∆Rν =
∫ ∞

z=0

K(z, ν) ·∆T (z) · ∂z = Kn,L ·∆TL (8.19)

Unfortunately, reality is not as simple as this. Real instruments have a finite resolution, ∆ν. For example,
IRIS has a spectral resolution, ∆ν, of about 4.5 cm−1 and AIRS has a ∆ν of about 0.5 cm−1 in the long-wave
and 2.0 cm−1 in the short wave. The measured intensities have been convolved with the instrument profile,
Φ(ν − ν0), and, therefore, the calculated radiances should also be convolved with the instrument profiles.

Rn =
∫
ν

Φ(ν − ν0) ·Rν · dν (8.20)

The order of integration can be reversed, such that the Kernel function is the only thing that changes.
In practice, the value of ∆ν is very small and the Planck function is relatively constant, so that:

K(z, ν) ≡
∫
ν

∂Bν(T 0(z))
∂T

∣∣∣
T 0(z)

∂τν
∂z

dν (8.21)

K(z, ν) ≡ ∂Bν(T 0(z))
∂T

∣∣∣
T 0(z)

∂
∫
ν

Φ(ν − ν0) · τν · dν
∂z

(8.22)



Chapter 8: Sounding Concepts Chris Barnet August 30, 2006 238

Figure 8.5: A small subset of AIRS temperature contribution functions. Notice that the 4.3 µm channels
have sharper contribution functions than both the AIRS 15 µm channels and the AMSU channels in Fig. 8.4
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Figure 8.6: AIRS kernel functions in the 15 micron ν2 region (top) and 4 micron ν3 fundamental carbon
dioxide band (bottom)
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8.6.2 Temperature Sounding using Cores of Lines

This section is derived from Houghton (1977, pg. 67-69) and Kaplan (1977).

Figure 8.7: Lewis David Kaplan (Born: June 21, 1917, Died: Apr. 14, 1999) defined selection rules for
optimum sounding channels in 1959. Picture courtesy of Mous Chahine

In the cores of unresolved and saturated lines (i.e., d > δν > γ0 · p, τν → 0 at ν = ν0) the Lorentz line
shape, given by substituting Eqn. 4.4 into Eqn. 4.3, can be integrated over the channel’s response function,
∆ν. The strength of the line, S, is usually tabulated per molecule or per amagat. We will use the quantity
N · S to represent the strength of the absorber for a number density of N . Noting that N = p/(k · T ) from
the Ideal gas law. In this derivation we will assume line full=width, gamma = γ0 · p.

κn =

ν0+∆ν/2∫
ν=ν0−∆ν/2

N · S · γ0 · p/π
(ν − ν0)2 + γ2

0 · p2
dν =

N · S · γ0 · p
π

·
ν0+∆ν/2∫

ν=ν0−∆ν/2

dν

(ν − ν0)2 + γ2
0 · p2

(8.23)

=
N · S · γ0 · p

π
·

x∫
ν=−x

dx

a2 + b2(x)2
where b = 1 and a = γ0 · p (8.24)

=
N · S
π
· 2 tan−1(f) where f =

∆ν
2 · γ0 · p (8.25)

= αν · p
T

(8.26)

The solution to the integral in Eqn. 8.24is taken from CRC Mathematics Tables #62∫
dx

a2 + b2x2
=

1
ab

tan−1

(
bx

a

)
CRC #62 (8.27)

The transmittance for this line is given by
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τline = exp
(∫

κn · dz
)

(8.28)

= exp
(∫

κn
H

p
· dp
)

(8.29)

∝ exp (−α · p/T ) (8.30)

and the weighting function for an isothermal region of the atmosphere, T �= f(p), is given by

W (z) ≡ − ∂τ

∂ loge(p)
≡ −p · ∂τ

∂p
= aν · p/T · exp (−aν · p/T ) (8.31)

The weighting function in cores of lines reaches its peak value at αν ·p = 1. The ratio of the two pressures
at half maximum is given by 11.55 = exp(2.45), thus, the width at half-peaks is on the order of 21

2 scale
heights. A large temperature gradient will sharpen the weighting function. For example, in adiabatic regions
(see Eqn. 2.50 and Eqn. 2.20) T (p+ δp) = T (p) · (1 + (Rg/cp) · loge(p))

8.6.3 Temperature Sounding using Wings of Lines

In the wings of lines (again, combining Eqn’s 4.4 and 4.3) we find that the Lorentz line-shape in the wing of
lines can be given by

κν =
N · S · γ0 · p/π

(ν − ν0)2 + γ2
0 · p2

� N · S · γ0 · p/π
(ν − ν0)2 = β · p2 for ν − ν0 � γ0 · p (8.32)

and the transmissivity is given by

τν = exp
(∫

κν · dz
)

(8.33)

= exp
(∫

κν
H

p
· dp
)

(8.34)

∝ exp
(
β · p2

)
(8.35)

so that the weighting function is given by

W (z) = − ∂τ

∂ log(p)
= 2 · βν · p2 exp

(
βν · p2

)
(8.36)

This function has a stronger peak and the pressure ratio for the half maximum points is only 11
4 scale

heights. Model calculations (Kaplan, 1977) show that this function does not change appreciably as the
channel full width half maximum grows assuming that βν does not vary greatly across the channel.

8.6.4 Effect of Unresolved Lines

AIRS has a FWHM channel spectral response function (CSRF) of about 0.5 cm−1. The 15 µm band of CO2

has FWHM of lines equal to 0.001 ≤ γ0 ≤ 0.1 cm−1 that are spaced about 1.6 cm−1. See figures in Section
4.4.4 for examples of this band. For this band of CO2 the lines are equally spaced and we can employ a band
model to represent the group of lines that are integrated by the AIRS CSRF. An appropriate band model
would be the Elsasser model (see Cess and Tiwari (1972) reference or Eqn. 4.92 in Section 4.4.3).

τν � 1− 2√
π

β′p∫
0

exp
(−x2

) · dx = 1− erf (β′p) (8.37)
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The Kernel function associated with a channel with unresolved lines, W ′(z), is given by

W ′(z) =
(

2
π

)2(
p

p0

)
exp

[
−
(

p

2 · p0

)2
]

(8.38)

This function is weaker and broader than a monochromatic weighting function, W (z), that can resolve the
wing of a line (see Eqn. 8.36 in Section 8.6.2). In Fig. 8.8 (taken from Kaplan et al., 1977) we see the
effect of resolution on weighting functions for two hypothetical instruments. The top panels of Fig. 8.8 are
approximately like the AIRS short-wave channels (∆ν = 2.0 cm−1) and the bottom panels are better than
any proposed orbiting sounder (0.2 cm−1).
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Figure 8.8: Example weighting (left) and normalized contribution functions (right) for an instrument with a
FWHM of 2.0 wavenumbers (top set) and 0.2 wavenumbers (Kaplan et al., 1977)
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8.6.5 Water Kernel Functions for AMSU and AIRS

For microwave water vapor channels the weighting function (see Eqn. 8.13) is given by

∂ΘL(n)
∂ρw

∣∣∣∣
ρw

=
T (L)
∆z

· ∂∆τ↑n(L, θ)
∂ρw

(8.39)

The water vapor weighting functions will move vertically as the total water vapor burden (WVB) changes.
Total WVB can range from 0.15 (1% probable low) to 146 (1% probable high) kg/M2 (1976 US Standard
Atm). It is more useful to classify moisture channels by the value of WVB (

∫
ρ · dz) that results in a optical

depth (k(ρ) ·∆z) equal to unity. If we refer to Fig. 3.1 we can estimate the τ = 1 WVB as

WVB = ρw ·∆z ≈ ρw/κw(T, p, ρw) (8.40)

These estimates are used to derive the values given in Section 25.2. Liquid water kernel functions are
completely analogous to the water vapor functions given above.

For AIRS the main water band is the ν2 band at 6.6 µm. The long-wave side of the band is sounded by
AIRS and the kernel functions are shown in Fig. 8.11. The main interference gas in this region is methane,
shown in Fig. 8.12.

Figure 8.9: The AMSU-B moisture weighting functions for mid-latitude (left) and tropic (right) conditions
(Grody 1993, pg. 310)
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Figure 8.10: Water vapor burden (total mass column density) kernel functions (Grody 1993, pg. 309)

Figure 8.11: AIRS water kernel functions in the 6.6 micron region



Chapter 8: Sounding Concepts Chris Barnet August 30, 2006 246

Figure 8.12: AIRS methane kernel functions in the 6.6 micron region

8.6.6 Minor Gas Kernel Functions

For gases that have a small optical depth a practical approach is to compute the transmittance derivatives by
expanding the exponential. Given a weak perturbation of a reference state, XL = XL(0) + ∆Xj

L(0), where
∆Xj

L is a perturbation in one species of gas, indicated by the superscript j. We can expand the definition of
transmittance, Eqn. 5.1, to obtain

τ↑ν (z,XL) = e
−sec(θ)

∞∫
z

∑
i

κν(i)·dz

= e
−sec(θ)

∞∫
z

(∑
i

κν(i)+∆κν(j)

)
· dz

(8.41)

= e
−sec(θ)

∞∫
z

∑
i

κν(i)· dz −sec(θ)

∞∫
z

∆κν(j)· dz

(8.42)

= e
−sec(θ)

∞∫
z

∑
i

κν(i)· dz

· e
−sec(θ)

∞∫
z

∆κν(j)· dz

(8.43)

Therefore, we can write the total transmittance as

τ↑(z,XL) = τ↑(z,XL(0)) · τ↑(z,∆Xj
L) (8.44)

This is the basis of linearizing the radiative transfer for determining composition. For minor gases we
can go one step further by noting that
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τ↑(z,∆XL) = e
−sec(θ)

∞∫
z

∆κν(j)· dz

� 1− sec(θ)

∞∫
z

∆κν(j) · dz (8.45)

Given that most monochromatic and rapid transmittance (see Section 5.11) algorithms require multi-
plication of many terms followed by an exponential an every level in the atmosphere. The approximation
above can make linearization of the radiative transfer equation, extremely efficient. In fact, this can make,
or break, the ability to do a retrieval in an operational code.

τ↑(z,XL) � τ↑(z,XL(0)) ·

1− sec(θ)

∞∫
z

∆κν(j) · dz

 (8.46)

What’s more, the Jacobian calculation is equal to

∆τ↑(z,XL)
∆Xj

L

� τ↑(z,XL)− τ↑(z,XL(0))
∆Xj

L

= τ↑(z,XL(0)) · sec(θ)
z∫

∞

∆κν(j) · dz
∆XL

(8.47)

Since τ↑(z,XL(0)) needs to be computed anyway for most algorithms, the execution time savings of
using Eqn. 8.47 can be enormous

8.7 Separation of surface temperature and emissivity

In Section 3.10 the concept of emissivity and skin depth was introduced. In this section, we will discuss the
retrieval of specular emissivity. The spectral structure of emissivity, ε(ν), is usually quite smooth relative to
the sharp lines due to atmospheric absorption features.

For a description of ocean emissivity functions see Section 3.10.2. For a comparison of land and ocean
emissivity see Fig. 3.11 and Fig. 3.10 for the microwave and infrared, respectively. The strongest spectral
feature in the infrared is the SiO2 restrahlung (a.k.a. restralen effect or restralen band) feature in desert
regions. An example of specular reflectance (i.e., r(ν) = 1− ε(ν)) land is shown in Fig. 3.16 and an example
of the angular dependence of reflectance for a pine shrub & pure sand mixture is shown in Fig. 3.17.

8.7.1 Using an known emissivity point to compute relative emissivity

The surface term of radiative transfer (see Section 5.4) is given by ε(ν) ·Bν(Ts) · τ↑(Ps). We can solve for a
relative emissivity by separating the spectral structure, f(ν), from the absolute value of emissivity at a given
frequency, ε(ν0). Usually, ν0 is near a maximum in emissivity where the surface reflectivity is a minimum.

Rs = ε(ν) ·Bν(Ts) · τ↑(Ps) = ε(ν0) · f(ν) ·Bν(Ts) · τ↑(Ps) (8.48)

Usually ε(ν0) is set to a known or assumed value and f(ν), and Ts are solved for. The location of the
Christiansen frequency (i.e., a minima in reflectance) is a good choice if water and ozone lines can also be
avoided. Christiansen frequency for the quartz feature at 830-832 cm−1 is a reasonable choice (ε(ν0)) ≈ 0.98).
For snow, one of the blackest substances on Earth in the infrared, we can use the values in Table 3.6.

8.7.2 Use of down-welling term to separate emissivity from surface temperature

Kahle and Alley (1992) showed that the separation of ε(ν0) from Ts requires use of the down-welling compo-
nent of radiative transfer. In Section 5.7, Eqn. 5.37 the down-welling term was given by
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Rd(ν, θ) = τ↑ν (Ps,X, θ) ·
2π∫

α=0

π
2∫

θ′=0

ρν(θ, θ′, α) · sin(θ′) · cos(θ′) · dθ′ · dα

·
0∫

p=Ps

Bν(T (p)) · dτ
↓
ν (p,X, θ′)
dp

· dp (8.49)

where α′ is the azimuthal angle, θ′ is an arbitrary zenith angle, θ is the zenith angle of the satellite. Over
water the reflectivity can be a function of wind (see Section 3.10.2) and the down-welling term can be a
function of the atmospheric state (Nalli et al. 2001).

But the down-welling component can be adequately approximated. See Section 5.9 and Section 5.9.2.
This will be quickly summarized here. If we use Eqn. 5.55 as a starting point

Rd(ν, θ) � τ↑ν (Ps,X, θ) · ρ(ν, θ) · π ·R↓
ν (8.50)

We can write the total radiance as a sum of the surface term, the atmospheric term and the down-welling
term

Robs(ν, θ) = Rs(ν, θ) + Ra(ν, θ) + Rd(ν, θ)
= ε(ν) ·Bν(Ts) · τ↑ν (Ps,X, θ) + Ra(ν, θ) + τ↑ν (Ps,X, θ) · ρ(ν, θ) · π ·R↓

ν (8.51)

If we assume we know the form of the reflectivity. For example, over land surfaces the reflection is Lambertian,
ρ(ν, θ) = (1− ε(ν, θ))/π and

Robs(ν, θ) = ε(ν) ·Bν(Ts) · τ↑ν (Ps,X, θ) +Ra(ν, θ) + τ↑ν (Ps,X, θ) · (1− ε(ν, θ)) ·R↓
ν (8.52)

and now we can rewrite the equation to solve for emissivity as a function of Ts.

ε(ν, θ) =
(Robs(ν, θ)−Ra(ν, θ)) /τ↑ν (Ps,X, θ)−R↓(ν, θ)

Bν(Ts)−R↓(ν, θ)
(8.53)

Bob Knuteson, University of Wisconsin, has discussed separating ε from Ts in high spectral resolution
instruments by using the fact that errors in emissivity or surface temperature cannot produce atmospheric
absorption features, therefore, the standard deviation of Eqn. 8.53 will be a minimum when the correct
surface temperature is found. This is illustrated in Fig. 8.14. In the region of weak CO2 lines (1060 to 1135
cm−1) the best skin temperature is that temperature that minimized the standard deviation of land surface
emissivity (LSE).

Once Ts is known then emissivity can be computed for all the window channels using 8.53

8.7.3 Using solar irradiance to constrain emissivity and solar reflectivity

The solar irradiance has a known spectral dependence and can be considered to be constant in the infrared.
Chahine (1980) showed that the simultaneous use of near infrared (3.7 → 4.3 µm) and the mid-infrared (11
µm) window regions can separate skin temperature, emissivity, and solar reflectivity.

8.7.4 Inhomogeneous surface types

Another issues is that all instruments have a finite spatial sampling. For AIRS at nadir the footprint is a 13.5
km circle and the scene can be composed of many different surface types, such as asphalt, grass, trees, soil,
and rocks, each with their own spectral emissivity. In Fig. 8.15 an example of AIRS and MODIS footprints
are shown over the ARM CART site in Oklahoma. A typical field is 1 mile square (≈ 100 acres). An AIRS
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Figure 8.13: Bob Knuteson (on laptop) at ITWG-13 in Oct. 2003

13.5 km nadir footprint has an area of 1.43·108 meters2 = 14,300 hectares = 35,335 acres (1 acre ≡ 43560
sq.feet).

In Fig. 8.16 a detail of surface types within an ARM CART site surface survey grid is shown.
In Figure 8.17 the AIRS 12 µm brightness temperature distribution is shown for a large number of

AIRS 13.5 km scenes over Texas. The derived land surface emissivity (LSE) for those scenes is also shown.
The AIRS brightness temperature shows a single distribution while the LSE shows a bimodal distribution.
Figure 8.18 the regions of low emissivity (bare soil) correlate with regions of higher temperatures. That is
low emissivity soil has less ability to radiate the heat away.

At 50 km the surface types are mixed and can be written in terms of the radiance emitted from the
different surfaces

Robs
ν =

∑
i,j

wi,j ·Ri,j,ν (8.54)

and we can define an effective emissivity

εν =
∑
i,j

wi,j · εi,j,ν (8.55)

such that the surface term can be posed in terms of an effective emissivity, εν , and effective skin temperature

Rs = ε(ν) ·Bν(Ts) · τ↑(Ps) ≡
∑
i,j

wi,j · εi,j,ν ·Bν(Ti,j,surf ) (8.56)

Therefore, the surface temperature, Ts, the aggregate emissivity, ε(ν), are what we derive from our measure-
ments from space. Validation of these products is difficult if there is a large spatial variability within the
footprint.
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Figure 8.14: Example of minimization of the standard deviation of land surface emissivity (LSE) versus
surface temperature

Figure 8.15: Example of surface types within a field-of-view (from Bob Knuteson, 2003).
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Figure 8.16: Example of surface types within a 9-mile (15 km) square survey grid on 11/22/04 (from Knuteson,
2003).

Figure 8.17: 12 µm AIRS has single distribution in brightness temperature while LSE has bimodal distribution
(from Knuteson, 2003).
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Figure 8.18: Derived LSE is spatially anti-correlated with surface temperature (from Knuteson, 2003).
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8.8 Unconstrained Linear Retrieval

We need to invert the integral to solve the equation for ∆T . We desire to have corrections for a fixed
number of levels, Nz. In a typical spectra there are a finite number of frequencies, Nν , in which the Kernel
functions are unique. For AIRS terrestrial spectra there are approximately 20 unique vertical functions while
for the Jupiter IRIS data there are about 12 unique functions over the range of 1 mb to 1 Bar. Both of these
instruments have many more channels covering this vertical range, therefore, there is a significant redundancy
in the measurements.
In a “real” problem there is a finite spectral range which corresponds to a limited vertical range within the
atmosphere. Therefore, the integral has finite limits.

∫ ∞

z=0

f(z) dz ≈
∫ z(1 mb)

z(1bar)

f(z) dz (8.57)

The integral can be approximated with a discrete midpoint rule quadrature (see PHYS 640 notes, Chapter
5). For a linear spacing in z (i.e., linear in loge(P )) the midpoint rule integration is:

∫ z(1 mb)

z(1bar)

f(z)∂z ≈ ∆z

[
f̄(z(1)) +

Nz∑
i=2

f̄(z(i))

]
(8.58)

For large Nz and well behaved kernel function (i.e., K(1) = 0) the midpoint rule integration reduces to a
simple summation:

∫ z(1 mb)

z(1bar)

f(z)∂z ≈ ∆z
Nz∑
i=1

f(z(i)) (8.59)

Therefore, our integral equation in Eqn. 8.7 can be replaced with:

∆Rν =
∫ ∞

z=0

K(z, ν) ·∆T (z) · ∂z ≈ ∆z
Nz∑

L=1

K(L, ν) ·∆T̄ (L) (8.60)

where T̄ (L) is the effective temperature of the layer. For a finite set of ν’s our equations can be written in a
matrix format. For Nν = 3 and Nz = 4 the matrix would look like:


∆R(ν(1))

∆R(ν(2))
∆R(ν(3))


 = ∆z ·


K(z(1), ν(1)) K(z(2), ν(1)) K(z(3), ν(1)) K(z(4), ν(1))
K(z(1), ν(2)) K(z(2), ν(2)) K(z(3), ν(2)) K(z(4), ν(2))
K(z(1), ν(3)) K(z(2), ν(3)) K(z(3), ν(3)) K(z(4), ν(3))


 ·



∆T (z(1))
∆T (z(2))
∆T (z(3))
∆T (z(4))


 (8.61)

which can be written in matrix form as (we include the ∆z component in the matrix Kn,L:

∆Rn = Kn,L ·∆TL (8.62)

If Nν is greater than Nz then there are more equations than unknowns and an inverse for Kn,L exists, K−1
L,n,

then the correction to the initial temperature profile can be found as follows:

K−1
L,n ·∆Rn = K−1

L,n ·Kn,L∆TL = ∆TL (8.63)

∆TL = K−1
L,n ·∆Rn =

[
KT

L,n ·Kn,L

]−1 ·KT
L,n ·∆Rn (8.64)

where we employ the definition of a an inverse of a non-square matrix to find the expression for K−1 as
follows
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Kn,L ·K−1
L,n = In,n (8.65)

KT
L,n ·

(
Kn,L ·K−1

L,n

)
= KT

L,n · In,n (8.66)(
KT

L,n ·Kn,L

) ·K−1
L,n = KT

L,n (8.67)

K−1
L,n =

(
KT

L,n ·Kn,L

)−1 ·KT
L,n (8.68)

Unfortunately, the real world is a cold cruel place and Nν is usually much smaller than Nz. This is
because the kernel functions tend to overlap and, therefore, are not independent. In addition, ∆Rn has a
large fraction of noise (due to low signal-to-noise related to the low temperatures) which makes the solution
both non-unique and very sensitive to the noise. Great care must be taken to select ν’s that retrieve the
maximum amount of unique information from the spectra.

Additional constraints, such as, requiring the final temperature profile to be smooth will allow least
squares techniques to be applied and the solution for ∆T can be found by iterative techniques. This process
is called “constrained linear inversion.” See Section 15.1.

8.9 Constrained Linear Retrieval of X

Using the notation of the generalized sensitivity matrix, Sn,L, in place of the traditional kernel function,
Kn,L the unconstrained expression we wish to solve has the form of

∆Rn = Rn − f(XL) = Sn,L ·∆XL + εn (8.69)

If the number of equations (channels) is significantly greater than the number of unknowns (levels) and we
can ignore the noise then the equation above has the simple inverse.

∆XL = S−1
L,n ·∆Rn (8.70)

Again, from the definition of an inverse

Sn,L · S−1
L,n = In,n (8.71)

ST
L,n ·

(
Sn,L · S−1

L,n

)
= ST

L,n · In,n (8.72)(
ST

L,n · Sn,L

) · S−1
L,n = ST

L,n (8.73)

therefore, for a non-square matrix, Sn,L, the inverse is given by

S−1
j,n =

[
ST

L,n · Sn,L

]−1
ST

L,n (8.74)

So that Eqn. 8.70 becomes

∆XL =
[
ST

L,n · Sn,L

]−1 · ST
L,n ·∆Rn (8.75)

For a small number of measurements, this problem is usually under-determined since the number of
equations (i.e., number of unique wavenumbers) is less than the number of unknowns (i.e, number of height
or pressure levels). For a large number of channels (e.g., AIRS or IASI) there is an inherent redundancy in
the measurements and the problem is ill-posed.

The existence of measurement error in ∆Rn also exacerbates this problem. If some channels are better
than others, we can weight those higher. There are many reasons that one channel could be better than
another, here are a couple:
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• The instrument noise is not uniform. With AIRS, two detectors exist for every channel, called “A”
and “B”. Depending on the quality of the detectors a channel can have “A-only”, “B-only” or “A+B”,
which means that the noise will be

√
2 higher for the “A-only” and “B-only” channels. All instruments

(grating and interferometer) have a characteristic U shape to the noise as a function of frequency.
Therefore, in a retrieval some channels have higher noise than others.

• In a temperature retrieval, the uncertainty due to ozone and water is a noise source. Therefore, channels
with very few or low-strength interference are better channels and should be weighted higher.

We can compute a weighted least squares solution

∆XL =
[
ST

L,n ·Wn,n · Sn,L

]−1 · ST
L,n ·Wn,n ·∆Rn (8.76)

however; one of the real problems is that the kernel functions Sn,L are very broad functions and, therefore,
are insensitive to high frequency oscillations in ∆XL. As a result, the inversion process usually converges
with unrealistic vertical profiles.

In the most crude sense, regularization is the stabilization of the inverse by adding something to the
matrix to avoid an in-determinant solution (i.e., a zero divided by zero). This, in effect, will dampen the
solution, ∆XL, and make it “stick” to the previous iteration. This results in a need for a background term,
Ψn, if we are going to iterate the solution.

∆XL =
[
ST

L,n ·Wn,n · Sn,L + HL,L

]−1 · ST
L,n ·Wn,n · (∆Rn − Φn) (8.77)

8.9.1 A simple example of regularization

We will consider two examples. First, let’s say we have a 2 channel instrument and the exact equations, given
by Eqn. 8.69 is given by (

1.2
1.22

)
≡
(

0.2 0.3
0.22 0.28

)
·
(

3
2

)
(8.78)

This equation is trying to solve for 2 pieces of information with 2 channels that are basically the same.
Therefore, instrument noise is going to dramatically degrade the result. We will add ± 0.1 to ∆Rn so that
our two equations become

∆Rn =
(

1.21
1.22

)
≡ Sn,L ·∆XL =

(
0.2 0.3
0.22 0.28

)
·∆XL (8.79)

The unconstrained least squares solution is given by minimization of a cost function, J , given by

J = (∆Rn)T · (∆Rn) (8.80)

with the solution to Eqn. 8.80

∆XL =
[
ST

L,n · Sn,L

]−1 · ST
L,n ·∆Rn (8.81)

We can easily compute the matrix operators for our example

ST
L,n · Sn,L =

(
0.088 0.122
0.122 0.168

) [
ST

L,n · Sn,L

]−1
=
(

1684 −1216
−1216 884

)
(8.82)

And find that the least squares solution will yield.

∆XL =
(

2.42
2.42

)
error =

(−0.58
0.42

)
(8.83)

We will show that linear constrained least squares solution is given by minimization of a cost function,
J , given by
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J = (∆Rn)T · (∆Rn) + γ∆XT
L ·∆XL (8.84)

This is a smoothing constraint that attempts to minimize derivatives in the temperature solution. The
least squares solution of Eqn. 8.84 is given by

∆XL =
[
ST

L,n · Sn,L + γIL,L

]−1 · ST
L,n ·∆Rn (8.85)

With γ equal to 0.01 the inverse has been stabilized substantially

[
ST

L,n · Sn,L + γ · IL,L

]−1
=
(

64.5 −43.9
−43.9 35.5

)
(8.86)

and the solution is worse

∆XL =
(−1.077

0.623

)
error =

(−1.077
−0.623

)
(8.87)

If we somehow knew the answer from some a-priori means, then we could constrain the solution to agree
with our a-priori information. This information does not have to be exact to have value. In a retrieval with
many free parameters, the a-priori information might be shape information or statistical information. The
cost function we wish to minimize would look like

J = (∆Rn)T · (∆Rn) + γ (TL − T a
L)T · (TL − T a

L) (8.88)

This formulation both stabilizes the inverse and keeps the solution from deviating too far from the
a-priori state, T a

L The least squares solution of Eqn. 8.88 is given by

∆TL =
[
ST

L,n · Sn,L + γIL,L

]−1 · [ST
L,n ·∆Rn −∆T a

L

]
(8.89)

Note that, ∆T a
L = (TL − T a

L)− (TL − T 0
L) = T a

L − T 0
L. In this example we

∆Xa
L =

(
2.8
1.8

)
(8.90)

and the answer retrieved became

∆XL =
(

2.937
2.033

)
error =

(−0.063
−0.033

)
(8.91)

8.9.2 A better example of regularization

In real life we do not know the kernel functions, Sn,L, exactly. This is because we have to compute them
without knowledge of the full atmospheric state. This point is usually ignored in most mathematical treat-
ments of inversion theory and it become more relevant with increasing non-linearity of the radiative transfer
equation. Therefore, in our equation we should add error to the Sn,L as well as ∆Rn. For unstable inverses
this adds another degree of complexity. We can re-work the previous example with(

1.21
1.22

)
≡
(

0.21 0.31
0.21 0.27

)
·
(

3
2

)
(8.92)

ST
L,n · Sn,L =

(
0.088 0.122
0.122 0.169

) [
ST

L,n · Sn,L

]−1
=
(

2395.1 −1726.1
−1726.1 1250.0

)
(8.93)

And find that the least squares solution will yield.

∆XL =
(

5.752
0.000

)
error =

(
2.762
−2.000

)
(8.94)



Chapter 8: Sounding Concepts Chris Barnet August 30, 2006 257

With γ equal to 0.01 the inverse has been stabilized substantially

[
ST

L,n · Sn,L + γ · IL,L

]−1
=
(

65.3 −44.4
−44.4 35.8

)
(8.95)

and the linear constrained solution is better

∆XL =
(

2.001
2.559

)
error =

(−0.999
0.559

)
(8.96)

however, using the same a-prior as before will yield the “best” answer

∆XL =
(

3.029
1.960

)
error =

(
0.029
−0.040

)
(8.97)

8.10 Covariance Matrices

There are a number of covariance matrices relevant to inversion theory. These will be discussed in this section.
It is worth mentioning the difference between the scalar and covariance operators. If rn is a vector we

can take the inner product to compute a scalar quantity that can be minimized, rT · r.

(
rT · r)

1,1
= [ r(1) r(2) . . . r(N) ] ·



r(1)
r(2)
. . .
r(N)


 (8.98)

This is in contrast to the covariance of r, given by r · rT that results in a matrix of rank equal to two:

(
r · rT

)
n,n

=



r(1)
r(2)
. . .
r(N)


 · [ r(1) r(2) . . . r(N) ] =



r(1) · r(1) r(1) · r(2) . . . r(1) · r(N)
r(2) · r(1) r(2) · r(2) . . . r(2) · r(N)

. . . . . . . . . . . .
r(N) · r(1) r(N) · r(2) . . . r(N) · r(N)


 (8.99)

It is the later form that is discussed in this chapter.

8.10.1 Covariance of geophysical parameters

In many methods the covariance of parameters, such as temperature, are needed. In Fig. 8.19 the covariance
of 7110 temperature programs from a global ensemble of Sep. 6, 2002 is shown. The ensemble mean
temperature was subtracted.

CVL,L =
1
K
· (Ttru(L, k)− < Ttru(L, k) >k) (Ttru(L, k)− < Ttru(L, k) >k)T (8.100)

CV (L1, L2) =
1
K

100∑
L1=1

100∑
L2=1

K∑
k=1

Ttru(L1, k) · Ttru(L2, k) (8.101)

< Ttru(L, k) >k=
1
K

∑
k

Ttru(L, k) (8.102)
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Figure 8.19: Covariance of Sep. 6, 2002 temperatures w.r.t. to global mean temperature of that day

8.10.2 Reduction in noise via averaging of channels

With modern instruments there is a large redundancy of information. A significant improvement in signal-
to-noise can be achieved by averaging channels together. In this discussion we will assume that the channel
radiance, R, is identical except for the instrument noise, which we will write as a standard deviation, σ, and
a random number, rn. The measurement is then given by

R̃n = R+ σ · rn (8.103)

For Gaussian noise the average of the random number for large N is zero

< r >=
1
N

N∑
n=1

rn = 0 for large N (8.104)

and the standard deviation of rn is equal to unity

SDV(r) =

√√√√ 1
N

N∑
n=1

r2n = 1 for large N (8.105)

The average of our radiance measurements will be given by

< R >=
1
N

N∑
n=1

R̃n = R+
1
N

N∑
n=1

σ̃ · rn = R+ σ · 1
N

N∑
n=1

r̃n = R (8.106)

The standard deviation of our radiance measurements will be given by

SDV(R) =

√√√√ 1
N

N∑
n=1

(
R̃n− < R >

)2

=

√√√√ 1
N

N∑
n=1

(σ · rn)2 = σ ·
√√√√ 1
N

N∑
n=1

r2n =
σ√
N

(8.107)
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Figure 8.20: The ensemble mean temperature for Sep. 6, 2002

In the instrument error covariance is computed properly the utilization of multiple channels will be
treated properly and the random error will be reduced. If the radiance errors are spectrally correlated then
the reduction in noise will be less than 1√

N
. The proper treatment of error covariance is discussed in the next

section.

8.10.3 Observation Noise

In all methods that minimize observations minus calculated we need the covariance of the obs-calc measure-
ment and model error. The error covariance matrix, Ns,i

n,n′ , is the estimate of the uncertainty in the observed
minus computed effective brightness temperature difference, ∆Θs,i−1

n .
The computation of the observational noise estimate is usually computed from the radiance error es-

timate, discussed below (Eqn. 7.67). The computational uncertainty is calculated for all geophysical pa-
rameters, X, not modified by the retrieval and, therefore, assumed known in a given step of the retrieval
process.

In general, we can compute the error covariance of a large ensemble of K radiance spectra versus a
computed radiance, where εn,k is the error for channel n and case k.

CV(ε)n,n ≡ 1
K
· (εn,k · εTk,n

)
(8.108)

For instruments with uncorrelated noise this can be approximated as

CV(ε)n,n � σ2(ε) · In,n (8.109)

σ2(ε) =
1
N

N∑
n=1

ε2n,k (8.110)
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In general, an effective brightness temperature (see Section 1.5.7). For infrared channels we compute
O-C as follows

∆Θs,i−1
n ≡

(
Rs

n,CCR −Rn(Xs,i−1
L )

)
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i−1
L

))




−1

(8.111)

while for microwave channels, where the data is given in brightness temperature, we compute a brightness
temperature difference

∆Θs,i−1
n ≡

(
Θn,CCR −Θn(Xs,i−1

L )
)

(8.112)

where Θn,CCR is either the observed AMSU brightness temperatures or the average of the 9 HSB brightness
temperatures within the AMSU field of regard.
For instruments with correlated noise the full error covariance matrix needs to be computed. This can be
done via equation 8.108 with a large volume of noise measurements, εn,k = NE∆Nn,k.

8.10.4 Apodized Interferometers

Apodized radiances from an interferometer have high spectral correlation. The correlation can be computed
statistically and the statistical error covariance matrix can be computed. See Section 12.12 in the PHYS640
notes. A quick summary is given here

Apodized radiances sampled at the Nyquist sampling can be written as a 2J − 1 point running mean of
the raw instrument radiances with weights, wk, given by

RA(n) =
J−1∑

k=−J+1

wk ·R(n+ k) (8.113)

In general we found that all apodization functions can be written in terms of an infinite cosine expansion,
therefore, the expansion of an apodization function into a cosine series allows calculation of the noise reduction
factor and spectral correlation in adjacent channels as shown above. We can define the weights, wk, in terms
of the cosine expansion coefficients, aj , as follows

wk = a|k|, for k = −(J − 1), J − 1. (8.114)

For example, Hamming apodization has J = 2 and a0 = 0.54 and a1 = 0.23. So that w−1 = 0.23, w0 =
0.54, w1 = 0.23 and

∑
wk = 1.

The apodized noise if reduced by a factor, f , given by

f =

[
J−1∑

k=1−J

w2
k

]− 1
2

(8.115)

and it can be shown that the channel correlation for a channel separated by ±n Nyquist channels is given by

cn = f2
J−1−n∑
k=1−J

wk · wk+n, for n = 1, 2J − 2. (8.116)

For Hamming apodization, the noise is reduced by f = 1.5862. This does not come for free because
channels separated by ± 1 are correlated by c1 = 62.5% and channels separated by ± 2 are correlated by
c2 = 13.3%. Channels separated by more then ± 2 channels have zero correlation.

The the noise reduction factors, f , and the correlation coefficients for typical apodization functions in
the literature are shown in Table 8.1 for up to channel separations of ± 4 for some common apodization
functions
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Figure 8.21: Snapshot of Richard W. Hamming (Feb. 11, 1915 - Jan. 7, 1998) (from http://www-gap.dcs.st-
and.ac.uk/ history/PictDisplay/Hamming.html)



Chapter 8: Sounding Concepts Chris Barnet August 30, 2006 262

Table 8.1: Spectral correlation coefficients for common apodization functions
apodization FWHM f c1 c2 c3 c4 . . . c10
3pt running 1.733 66.6667 33.3333
5pt running 2.236 80.0000 60.0000 40.0000 20.0000
Hamming 1.5043 1.5863 62.5063 13.3115 0.0000 0.0000
Triangle 1.4683 1.7147 60.3836 14.8953 6.7095 3.7238 0.5957
Blackman 1.9050 1.8119 75.5089 31.5496 6.5660 0.5253
Kaiser-Bessel
K=1 1.0359 1.0749 9.1370 -1.9162 0.8287 -0.4618 -0.0732
K=2 1.1286 1.2285 27.6766 -3.1053 1.3428 -0.7465 -0.1181
K=3 1.2492 1.3712 43.5409 0.0624 0.6235 -0.4029 -0.0710
K=4 1.3766 1.4838 54.3046 5.7960 0.0050 -0.0847 -0.0258
K=5 1.5011 1.5746 61.6064 12.1233 0.2256 0.0026 -0.0067
K=6 1.6196 1.6513 66.8479 18.1986 1.2951 -0.0028 -0.0013
K=7 1.7317 1.7183 70.8069 23.7595 3.0023 0.0591 -0.0002
K=8 1.8378 1.7782 73.9116 28.7617 5.1313 0.2834 -5.1·10−6

K=9 1.9386 1.8324 76.4152 33.2362 7.5132 0.7066 -7.8·10−7

K=10 2.0347 1.8822 78.4784 37.2371 10.0268 1.3296 0.0000
Connes 1.2268 1.3502 41.2239 -0.5562 0.7509 -0.4688 -0.0804
Beer 1.5780 1.5687 62.7836 11.2737 -1.1889 0.2240 -0.0602
Norton-Beer
weak 1.1217 1.2581 28.1799 1.0934 -0.1873 0.1093 0.0265
weak 1.2000 1.3611 40.0355 2.8320 -0.2993 0.1038 0.0220
medium 1.2961 1.4531 50.1567 5.8980 -0.5895 0.1679 0.0297
medium 1.4000 1.5141 56.9287 8.3481 -0.7535 0.1452 0.0154
strong 1.5011 1.6039 63.0906 14.8601 0.7006 -0.0220 -0.0003
strong 1.6000 1.6487 66.6350 18.1314 1.1797 -0.0366 -0.00007
Dolph Chebyshev
s=30 dB 1.4025 46.39 1.77 .406 1.27
s=50 dB 1.6108 64.03 15.08 .758 1.54
s=70 dB 1.7616 73.09 27.48 4.60 1.80
ASE (Amato et al.)
p=1,λ=.20 1.9074 71.07 34.89 15.62 1.54
p=2,λ=.02 1.6845 74.41 28.09 -.22 1.83

• Kaiser-Bessel functions. R.W. Hamming, Digital Filters, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall,
1977 and F.F. Kuo and J.F. Kaiser, System Analysis by Digital Computer, John Wiley and Sons, New
York, 1966.

• Norton-Beer functions. R.H. Norton and R. Beer, “New apodizing functions for Fourier spectroscopy,”
J. Opt. Soc. of America, vol. 66, No. 3, pp. 259-264, Mar. 1976. and R.H. Norton and R. Beer,
“Errata,” J. Opt. Soc. of America, vol. 67, No. 3, p. 419, Mar. 1977.
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8.10.5 Cloud Clearing Noise

The theory of cloud clearing is discussed in detail in Chapter 7, and in the references Susskind et al. (2003),
Susskind et al. (1998).

Cloud clearing computes a single radiance spectrum from a linear combination of cloudy radiances. This
is written in terms of the parameters associated with transformed FOV’s Ss

n,j · Us
j,k (Eqn. 7.44) or in terms

of the observed FOV’s Ss
n,j (Eqn. 7.45) as follows

Rs
n,CCR = Rn +

(
Ss

n,j · Us
j,k

) · ζs
k (8.117)

= Rn + Ss
n,j ·

(
Us

j,k · ζs
k

)
= Rn + Ss

n,j · η̃s
j (8.118)

Errors in the cloud clearing parameters, ηs
j , will induce spectrally correlated errors into the observed

error covariance
The covariance of the clear column radiance is given by the amplified instrument noise and the noise due
to the error in ζk, which is found by differentiating Eqn. 7.44 w.r.t. ζk and multiplying the result by its
transpose. Therefore, the error in ζk (uncorrelated) or ηj results in a highly spectrally correlated observed
radiance as given in Eqn. 7.67

δRs
n,CCR ·

(
δRs

n′,OBS

)T = As
n ·NE∆N(n) ·NE∆N(n) ·As

n′ +
[
Ss

n′,j · Us
j,k ·

(
δζk · δζT

k

)s · Us′
k,j · Ss′

j,n

]
(8.119)

8.10.6 Estimate of the Forward Model Noise

The computational uncertainty is calculated for all geophysical parameters, X, not modified by the retrieval
and, therefore, assumed known in a given step of the retrieval process.

The radiance error estimate, Es,i
n,g, due to uncertainties in geophysical quantities is computed from error

estimates in geophysical groups Xs,i
L,g (e.g., an entire temperature profile). As with the sensitivity functions,

this can be thought of as an error estimate of a parameter, δAg, and an associated function, Fg(L). The
partial derivatives are calculated from the current estimate of the geophysical state, Xs,i−1

L and an estimate
of the uncertainty in each geophysical group to be held constant in this stage of the retrieval, δXs,i

L,g, and is
calculated by a finite difference

for infrared channels

Es,i
n,g ≡ δAs,i−1

g · ∂Rn(Xs,i−1
L )

∂Ag

∣∣∣∣∣
Xs,i−1

L

(8.120)

�
(
Rn(Xs,i−1

L + δXs,i−1
L,g ⊗Qg)−Rn(Xs,i−1

L )
)

(8.121)

and for microwave channels

Es,i
n,g � Θn(Xs,i−1

L + δXs,i−1
L,g ⊗Qg)−Θn(Xs,i−1

L ) (8.122)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated with respect
to other parameters (e.g., surface spectral emissivity error can be correlated with skin temperature. We use
Qg as a scaling to compensate for assumed anti-correlation in these error estimated. Currently we set Qg to
0.5 for T (p) and q(p) error estimates and 1.0 for all other error estimates.

The computational covariance matrix, Cs,i
n,n′ , is composed of a summation of all the radiance error

estimate for all geophysical parameters held constant during a retrieval
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Figure 8.22: Examples of radiance errors induced by geophysical errors
.

Cs,i
n,n′ ≡

∑
g

Es,i
n,g ·

(
Es,i

n′,g

)T

(8.123)

The retrieval error covariance matrix is a combination of the cloud cleared radiance error covariance
(Eqn. 7.67) and the computational error covariance terms

Ns,i
n,n′ =

(
δRs

n,CCR ·
(
δRs

n′,OBS

)T + Cs,i
n,n′ + δRU

n · δn,n′ · (δRU
n′
)T)

(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i−1
L

))

)
·
(

∂Bν

∂T

∣∣∣∣
B−1

ν (Rn′ (Xs,i−1
L

))

) (8.124)

Where δRU
n is a small term for additional unknown sources of error which is presently computed from

RU
n ≡ 0.1◦ ·


∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i−1
L

))




−1

(8.125)

8.10.7 Covariance of the State Vector

For statistical approaches (see Chapters 14 19, and 19) we need statistical estimates of the covariance of the
background state, XL relative to a reference state. For example, in minimum variance, the background state
is that state resulting from a linear statistical regression. For maximum likelihood, the reference state is the
a-priori state. We can also imagine using the ensemble mean or climatological state as a reference state. In
this section we will discuss the covariance computation with respect to an arbitrary state.
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If we have a large ensemble of K atmospheric states, XL,k, where L is the index for the individual state
parameter, then the covariance of the state vector w.r.t. a reference state, ∆XL,k, is defined as

CV(X)L,L ≡ 1
K
·∆X̂L,k ·∆X̂T

k,L (8.126)

For many applications the diagonal element is used, which is essentially the standard deviation

CV(X)L,L ≡ 1
K

∆X̂L,k ·∆X̂T
k,L ≈ σ2(X) · IL,L (8.127)

where σ(X) is defined as

σ2(X) =
1
K

K∑
k=1

∆X2
L,k (8.128)

8.11 Generalized Sensitivity Functions

8.11.1 Specification of Vertical and Spectral Functions

• A fine vertical grid for accurate computation of the absorption coefficient, κi(ν, p(z),X, θ) and radiances.

• But we do not have enough vertical information to solve for that many parameters.

• Functions, FL,j , and parameters, ∆As,i
j , are chosen in a trade-off between resolution and stability

(Backus & Gilbert trade-off).

Xs,i
L = Xs,i−1

L +
∑

j

FL,j ·
(
∆As,i

j ⊗∆Â−1
j

)
(8.129)

• Vertical functions are overlapping trapezoids

• Spectral functions are overlapping triangles

Sub-sets of vertical and spectral functions sum to unity∑
j

(FL,j) = 1 (8.130)

The sensitivity to a parameter can be computed by perturbation of the function by a fixed finite amount,
∆Âj ,

Ss
n,j ≡ ∆Âj · ∂Rn(X)

∂Aj

∣∣∣∣∣
Xs,i

L

(8.131)

�
(
Rn(Xs,i−1

L + FL,j ·∆Âj)−Rn(Xs,i−1
L )

)
(8.132)

• ∆Âj should be large enough to be numerically stable.
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Figure 8.23: Example of vertical functions used to compute sensitivity functions

• ∆Âj should be small enough to keep the system quasi-linear.

• Ss
n,j should be computed whenever the change is considered potentially non-linear.

∆XL ≡ ∆TL (8.133)

where the variable ∆XL is analogous to tn[,i] in the discussions on least squares methods (in the PHYS 640
notes). In remote sounding applications, XL represents temperature profiles, as discussed above, as well as
moisture profiles, ozone profiles, surface parameters, cloud parameters, as well as profiles or parameters of
trace gases.

It is also convenient to write the kernel function as a sensitivity matrix.

Sn,L ≡ ∆z(L) ·Kn,L (8.134)

The S matrix can be is computed using vertical combinations of the geophysical parameters XL. In
a linear system, linear combinations of parameters is equivalent to certain forms of regularization (i.e.,
smoothing operators).

For a finite set of ν’s our equations can be written as

∆R(n) ≈
NL∑
L=1

Sn,L ·X(L) + ε(n) (8.135)




∆R(1)
∆R(2)
. . .

∆R(Nν)


 =



S(1, 1) S(2, 1) . . . S(1, NL)
S(1, 2) S(2, 2) . . . S(2, NL)
. . . . . . . . . . . .

S(Nν , 1) S(Nν , 2) . . . S(Nν , NL)


 ·


X(1)
X(2)
. . .

X(NL)


+



ε(1)
ε(2)
. . .

ε(Nν)


 (8.136)
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8.12 Derivation of a General Cost Function

We will temporarily dropped the subscripts for the sake of brevity in the derivation. The notation we will
use is.

• J is a scalar quantity to be minimized. This should not to be confused with the Jacobian in the PHYS
640 notes.

• y = Rn, are the observations

• x ≡ XL, are the parameters we are solving for

• f(x) is the forward model calculation. It has the same dimensionality as Rn, but we will ignore the
subscript.

• W ≡ Wn,n is an arbitrary square symmetric matrix, representing the relative weight of the observa-
tions. This is traditionally given as the inverse of the observation error covariance, Nn,n, where the
error covariance includes both observational and forward model errors. In Rodger’s and Houghton’s
terminology this is N ≡ Sε and W = N−1 ≡ S−1

ε .

• K = Sn,L are the derivatives of the measurements (radiances) w.r.t. the parameters (e.g., temperature).

• H ≡ HL,L is an arbitrary square symmetric matrix, usually this is a constraint on how the parameters
should behave, such as smoothness.

• xa ≡ Xa
L is an a-priori estimate of the state.

• C ≡ CL,L is an arbitrary square symmetric matrix. In Rodger’s and Houghton’s terminology this is
C ≡ Sa, which is the covariance of the the a-priori minus the truth.

• α and β are scalars used to equalize the physical dimensionality.

Most of the methods of regularization can be written in terms of a minimization of the following scalar
(i.e., compare Eqn. 8.98 and Eqn. 8.99) cost function, J ,

J = (f(x)− y)T ·W · (f(x)− y) + α · (x− xa)T · C−1 · (x− xa) + β · xT ·H · x (8.137)

In the literature α = 1, β = 0 will reduce to the forms seen in Rodger’s and Eyre publications and
α = 0, β = 1 are the forms seen in Conrath’s and Twomey’s publications.

We can utilize Eqn A.35 and Eqn. A.36 to expand the cost function, Eqn. 8.137, as follows

J = (f(x)T − yT ) ·W · (f(x)− y) + α · (xT − xT
a ) · C−1 · (x− xa) + β · xT ·H · x (8.138)

then expand the squares to obtain

J = −yT ·W · f(x) + yT ·W · y + f(x)T ·W · f(x)− f(x)T ·W · y
+ α · [xT · C−1 · x− xT

a · C−1 · x− xT · C−1 · xa + xT
a · C−1 · xa

]
+ β · xT ·H · x (8.139)

The minimum is found when

∂J

∂x
= 0 (8.140)

to simplify the expressions we will define two intermediate vector expressions
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ei ≡ ∂xj

∂xi
and (8.141)

eT
i ≡ ∂xT

j

∂xi
(8.142)

The ei’s are equal to one when i = j and zero otherwise; however, we do not need to assume this. If we define
Ki ≡ ∂f(x)

∂xi
and KT

i ≡ ∂f(x)T

∂xi
. These derivatives are computed about a first guess state or the a priori state,

xa. The fact that K(x) �= K(xa) makes the problem non-linear and will require iteration. Other derivatives
are formally equal to zero: ∂y

∂x ≡ 0, ∂xa

∂x ≡ 0, ∂C−1

∂x ≡ 0, and ∂H
∂x ≡ 0. The derivative of J can now be written

as as a vector equation (i.e., e ≡ �e that has components ei) and is given by

∂J

∂x
= −yT ·W ·K · e+ eT ·KT ·W ·K · x+ xT ·KT ·W ·K · e− eT ·KT ·W · y
+ α · eT · C−1 · x+ α · xT · C−1 · e− α · xT

a · C−1 · e− α · eT · C−1 · xa

+ β · eT ·H · x+ β · xT ·H · e (8.143)

separation of components of e from eT will yield

∂J

∂x
= eT · [KT ·W ·K · x−KT ·W · y + α · C−1 · x− α · C−1 · xa + β ·H · x]
+

[
xT ·KT ·W ·K − yT ·W ·K + α · xT · C−1 + α · xT

a · C−1 + β · xT ·H] · e (8.144)

Notice that the first term is simply the transpose of the second term (given that HT = H) and, therefore,
the argument within the brackets must both be zero, that is,

[
KT ·W ·K + α · C−1 + β ·H] · x = KT ·W · y + α · C−1 · xa (8.145)

Or, finally, our generalized expression for regularization of the cost function given in Eqn. 8.137

J = (f(x)− y)T ·W · (f(x)− y) + α · (x− xa)T · C−1 · (x− xa) + β · xT ·H · x

is given by
x =

[
KT ·W ·K + α · C−1 + β ·H]−1 · (KT ·W · y + α · C−1 · xa

)
(8.146)

or in the generalized notation

J = (∆Rn)T ·Wn,n · (∆Rn)
+ α · (XL −Xa

L)T · C−1
L,,L · (XL −Xa

L) + β ·XT
L ·HL,L ·XL (8.147)

is given by

∆XL =
[
ST

L,n ·Wn,n · Sn,L + α · C−1
L,L + β ·HL,L

]−1

·
(
ST

L,n ·Wn,n ·∆Rn + α · C−1
L,L ·∆Xa

L

)
(8.148)

8.12.1 Generalized Cost function as a weighted average of a priori and instru-
ment function

(This section is adapted from Houghton 1986, pg. 129-130) and a presentation given by Larry McMillin on
Mar. 21, 2005).
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A weighted average of two quantities, x1 and x2, is given by

x = w1 · x1 + w2 · x2 (8.149)

The best weight is the one that minimizes the standard deviation of the result. If x1 has a standard deviation
given by σ1 and x2 has a standard deviation given by σ2 then the standard deviation of the result if given by

σ(x)2 = (w1σ1)
2 + (w2 · σ2)

2 (8.150)

An additional constraint is that the weights should sum to unity,
∑
wi = 1 or w2 = 1− w1. Therefore,

the standard deviation of the result can be given by

σ(x)2 = w2
1 · σ2

1 + (1− w1)
2 · σ2

2 (8.151)
= w2

1 · σ2
1 +
(
1− 2w1 + w2

1

) · σ2
2 (8.152)

(8.153)

The minimum variance in the result will be obtained when

∂σ2
x

∂w1
= 2 · w1 · σ2

1 − 2 · σ2
2 + 2 · w1 · σ2

2 = 0 (8.154)

Solving for the optimal w1 yields

w1 =
σ2

2

σ2
1 + σ2

2

and w2 = 1− w1 =
σ2

1

σ2
1 + σ2

2

(8.155)

An alternate form, in which w1 contains only σ1 in the numerator can be found by dividing the numerator
and denominator in the previous expression by σ2

1 · σ2
2 to obtain

w1 =
1

σ2
1

1
σ2
1

+ 1
σ2
2

and w2 =
1

σ2
2

1
σ2
1

+ 1
σ2
2

(8.156)

Thus, the best weighting of two quantities is shown to be equal to inverse of the square of the standard
deviation of the quantities to be added:

x =
x1
σ2
1

+ x2
σ2
2

1
σ2
1

+ 1
σ2
2

(8.157)

By analogy, a simple weighted sum of two vectors, x1 and x2, with a covariance of CV (x1) and CV (x2),
respectively, can be given by

x =
[
CV −1(x1) + CV −1(x2)

]−1 · (CV −1(x1) · x1 + CV −1(x2) · x2

)
(8.158)

For atmospheric sounding we set x ≡ x1 (the retrieval state) and xa ≡ x2 (the a priori state) then our
solution can be written as

x =
[
CV −1(x) + CV −1(xa)

]−1 · (CV −1(x) · x+ CV −1(xa) · xa

)
(8.159)

The weighted least squares solution of a linear set of equations, y = K · x, is given by

x =
[
KT ·W ·K]−1 ·KT ·W · y ≡ D · y (8.160)

where the best weighting function for the equation is given by W = CV −1(y). In this case, the formal error
of the least squares fit has a covariance of CV (x) ≡ [KT ·W ·K]−1 (see PHYS640 notes, Chapter 13, Section
7), therefore,

CV −1(x) = KT ·W ·K = KT · CV −1(y) ·K (8.161)
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that is, the covariance in the retrieval is related to the transformed covariance in the measurements. Thus,
we can write

x =
[
KT ·W ·K + C−1(xa)

]−1 · (KT ·W ·K ·D · y + C−1(xa) · xa

)
(8.162)

x =
[
KT ·W ·K + C−1(xa)

]−1 · (KT ·W · y + C−1(xa) · xa

)
(8.163)

which is identical Eqn. 8.146 with β = 0. Therefore, the retrieval process is similar to a weighted average of
a least squares solution, determined from the radiances, and a a-priori vector.

8.12.2 Rewriting Solution to Cost function in terms of the a-priori

If we temporarily define Q ≡ [KT ·W ·K + α · C−1 + β ·H]−1 then Eqn. 8.146 becomes

x = Q · (KT ·W · y + α · C−1 · xa

)
= α ·Q · C−1 · xa +Q ·KT ·W · y (8.164)

We desire to separate xa from the expression to make the equation an iterative equation, thus, we can add
zero in the form of ±Q ·KT ·W ·K · xa and ±Q · β ·H · xa to obtain

x = Q · α · C−1 · xa +Q ·KT ·W ·K · xa +Q · β ·H · xa

+ Q ·KT ·W · y −Q ·KT ·W ·K · xa −Q · β ·H · xa (8.165)

which simplifies to

x = Q ·Q−1 · xa + Q · [KT ·W · (y −K · xa)− β ·H · xa

]
(8.166)

re-inserting the expression for Q yields the form usually seen in the literature

x = xa +
[
KT ·W ·K + α · C−1 + β ·H]−1 · [KT ·W · (y − f(x)− α ·K · xa)− β ·H · xa

]
(8.167)

8.12.3 Rewriting Solution to Cost function without inverses of covariances

The expressions in Eqn. 8.167 require computing W = N−1 and C−1. Both of these inverses can be
computationally expensive in practice. If we re-write Eqn. 8.167, replacing W = N−1 and setting β = 0, we
will obtain

x = xa +
[
KT ·N−1 ·K + α · C−1

]−1 ·KT ·N−1 · (y − f(x)− α ·K · xa) (8.168)

We then utilize the matrix identity

KT ·N−1 ·K · α · C ·KT +KT = KT ·N−1 ·K · α · C ·KT +KT

KT · [N−1 ·K · α · C ·KT + In,n

]
=

[
KT ·N−1 ·K · α · C + IL,L

] ·KT

KT ·N−1 · [K · α · C ·KT +N
]

=
[
KT ·N−1 ·K + α · C−1

] · α · C ·KT[
KT ·N−1 ·K + α · C−1

]−1 ·KT ·N−1 = α · C ·KT · [K · α · C ·KT +N
]−1

(8.169)

to obtain

x = xa + α · C ·KT · [K · α · C ·KT +N
]−1 · (y − α ·K · xa) (8.170)
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8.13 Selection of Channels

The basic idea here is to select channels that are most sensitive to the parameter being retrieved and least
sensitive to interference from other parameters that are not well known. We also need to factor in instrumental
considerations to pick channels that have the lowest instrument noise and the best calibration.

For temperature sounding we use channels that are sensitive to well mixed and slowly varying gases. On
the Earth we use CO2 and N2O. On the outer planets we can use H2 and, to some extent, CH4. Criteria for
channel selection should include

• preferentially select wings of lines (see Section 8.6.2)

• select channels with small amount of interference from other gases (e.g., water, ozone, etc) (see Section
4.1.1)

• avoid channels that are in sensitive to a large variation of surface emissivity (see Section 5.4)

• utilize the SW channels, if possible (nighttime?) to take advantage of the Planck function non-linearity.
(see Section 1.5.4)

For composition retrievals, such as water vapor on the Earth, we obviously want channels that are most
sensitive to water vapor, but we also want to be insensitive to variations in methane, surface temperature,
and surface emissivity uncertainties. In some sense, we want differences of channels such that the retrieval
can determine the area of absorption (curve of growth), rather than the absolute radiance value.

• select cores and wings of lines

• select channels with small amount of interference from other gases

• avoid channels that are in sensitive to a large variation of surface emissivity

For profile retrievals we also need channels at each vertical level of interest. Given that the vertical
sounding is a function of zenith angle and the amount of the gas present in the atmosphere, this means that
we may want to select a group of channels that accommodate a variety of atmospheric conditions and viewing
geometries.

This leads experts to the argument that all channels should be used in a retrieval. While this is obviously
computationally burdensome for modern instruments it is also possibly less accurate because the interference
effects can only be estimated and, therefore, can induce larger errors that make the retrieval system unstable.

In Fig. 8.24 a selection of AIRS channels is shown for different retrieval types. In general,

• Temperature profile, T (p), utilizes the wings of CO2 lines. For stratospheric channels these are the
channels with lower brightness temperature, Θ(n), and for tropospheric channels these have higher
Θ(n). The P,Q,and R branched of the 15 µm ν2 band and the R branch of the 4.3 µm ν3 band are
used.

• Moisture profile, q(p), retrievals utilize both wings and cores of water lines in the 6.6 µm (ν2), 12 µm,
and 3.7 µm regions.

• Surface skin temperature (Ts), emissivity (ε(ν)), and solar reflectivity, ρ�(ν) utilize channels with high
transmittance τ↑(Ps)→ 1) in the 8-12 µm region and the 3.8 µm region.

• Ozone profiles (O3(p)) utilize the P and Q branch of the 9.6 µm ν3 band of ozone. The R-branch is not
used due to CO2 “laser” lines and a SiO2 emissivity feature at 9 µm.

• Methane column density, CH4, is determined from the ν4 fundamental at 7.7 µm.

• Carbon Monoxide column density, CO, is determined from the fundamental band at 4.7 µm
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In Table 8.2 a portion of the spreadsheet used to select channels is shown. Here we simultaneously look
at the channel noise, NE∆T, evaluated at the brightness temperature. It is also important to look at the
various transmittance components, in this case of fixed, water, and ozone from the top-of-atmosphere to the
surface. Finally, we look at the pressure at which the total transmittance crosses τ↑(p) = 1

2 as an indication
of the approximate altitude to which this channel is most sensitive. For microwave channels (at end of the
table) the fixed, water vapor, and liquid water transmittances are shown. The liquid water is computed for
a total column amount of 0.003 g/cm2 distributed in the lower 10 RT layers (≈ lower 250 mb).
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Figure 8.24: Illustration of a channel set for AIRS temperature, surface, moisture, and trace gas retrievals
.
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Table 8.2: Example of a channel selection list for AIRS temperature sounding
chl cm−1 use NE∆T τ↑fixed(Ps) τ↑water(Ps) τ↑ozone(Ps) P (τ = 1

2 )
4 650.33 TTU 0.630 0.00 0.10 0.95 14.1
6 650.81 TTU 0.640 0.00 0.10 0.96 31.3
10 651.77 TT. 0.628 0.00 0.13 0.98 20.9
11 652.01 TTU 0.666 0.00 0.14 0.97 14.4
14 652.73 TT. 0.608 0.00 0.13 0.93 54.0
16 653.21 TT. 0.659 0.00 0.12 0.95 27.6
17 653.45 TTU 0.616 0.00 0.12 0.95 13.5
20 654.17 TT. 0.574 0.00 0.12 0.94 46.6
21 654.42 TT. 0.618 0.00 0.12 0.94 51.2
23 654.90 TTU 0.619 0.00 0.12 0.94 14.5
24 655.14 TT. 0.573 0.00 0.12 0.95 17.0
27 655.87 TT. 0.573 0.00 0.16 0.91 50.7
28 656.12 TT. 0.561 0.00 0.16 0.92 41.4
29 656.36 TTU 0.547 0.00 0.15 0.94 18.6
33 657.34 TT. 0.509 0.00 0.15 0.98 46.1
34 657.58 TT. 0.515 0.00 0.16 0.98 45.9
36 658.07 TTU 0.515 0.00 0.10 0.88 13.6
39 658.81 TT. 0.491 0.00 0.02 0.93 46.1
40 659.05 TT. 0.501 0.00 0.02 0.92 49.7
42 659.54 TTU 0.474 0.00 0.11 0.93 14.7
46 660.53 TT. 0.461 0.00 0.12 0.98 50.4
51 661.77 TT. 0.473 0.00 0.15 0.86 44.0
52 662.02 TT. 0.473 0.00 0.15 0.86 49.0
54 662.51 TTU 0.472 0.00 0.15 0.89 8.65
55 662.76 TTU 0.460 0.00 0.15 0.92 7.96
56 663.01 TTU 0.455 0.00 0.16 0.92 13.6
59 663.76 TT. 0.449 0.00 0.16 0.96 35.2
62 664.51 TT. 0.442 0.00 0.16 0.91 26.2
63 664.76 TT. 0.441 0.00 0.16 0.90 23.8
68 666.01 TT. 0.447 0.00 0.17 0.89 31.1
69 666.26 TT. 0.436 0.00 0.17 0.90 41.7
71 666.77 TT. 0.422 0.00 0.17 0.95 27.0
72 667.02 TT. 0.416 0.00 0.17 0.92 19.8
73 667.27 TTU 0.421 0.00 0.17 0.93 7.84
74 667.52 TTU 0.415 0.00 0.17 0.95 1.25
75 667.77 TTU 0.417 0.00 0.17 0.97 1.07
76 668.03 TTU 0.407 0.00 0.17 0.97 1.26
77 668.28 TTU 0.407 0.00 0.20 0.96 1.74
78 668.53 TTU 0.411 0.00 0.20 0.97 2.88
79 668.79 TTU 0.423 0.00 0.20 0.97 4.83
80 669.04 TTU 0.416 0.00 0.20 0.97 7.20
82 669.55 TTU 0.389 0.00 0.20 0.97 8.87
83 669.80 TTU 0.403 0.00 0.20 0.97 9.21
84 670.06 TTU 0.488 0.00 0.20 0.97 17.0
86 670.57 TT. 0.418 0.00 0.20 0.95 35.1
92 672.10 TT. 0.409 0.00 0.20 0.93 49.0
93 672.36 TT. 0.413 0.00 0.20 0.93 39.4
98 673.64 TT. 0.412 0.00 0.19 0.90 49.5
99 673.90 TT. 0.403 0.00 0.19 0.97 42.0
101 674.41 TT. 0.421 0.00 0.20 0.96 12.4
104 675.19 TT. 0.425 0.00 0.22 0.89 49.0
105 675.45 TT. 0.448 0.00 0.22 0.90 43.7
108 676.23 TT. 0.421 0.00 0.21 0.94 16.2
110 676.74 TT. 0.438 0.00 0.23 0.96 48.9
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chl cm−1 use NE∆T τ↑fixed(Ps) τ↑water(Ps) τ↑ozone(Ps) P (τ = 1
2 )

111 677.01 TT. 0.440 0.00 0.23 0.94 46.1
113 677.53 TTU 0.391 0.00 0.22 0.96 12.7
116 678.31 TT. 0.427 0.00 0.20 0.92 49.3
117 678.57 TT. 0.442 0.00 0.23 0.93 46.5
123 680.14 TT. 0.396 0.00 0.23 0.93 48.0
124 680.40 TT. 0.425 0.00 0.23 0.94 30.3
128 681.46 TT. 0.431 0.00 0.24 0.95 50.5
129 681.72 TT. 0.424 0.00 0.22 0.96 49.7
138 689.49 TT. 0.343 0.00 0.02 0.86 65.3
139 689.76 TT. 0.346 0.00 0.00 0.90 70.7
144 691.12 TT. 0.312 0.00 0.00 0.87 86.1
145 691.39 TT. 0.354 0.00 0.00 0.81 83.4
150 692.76 TT. 0.362 0.00 0.00 0.84 101
151 693.03 TT. 0.363 0.00 0.00 0.91 89.7
156 694.40 TT. 0.311 0.00 0.16 0.94 117
157 694.67 TT. 0.323 0.00 0.22 0.94 96.4
159 695.22 TT. 0.301 0.00 0.23 0.93 29.7
162 696.05 TT. 0.323 0.00 0.11 0.88 131
165 696.88 TT. 0.310 0.00 0.25 0.92 36.7
168 697.71 TT. 0.313 0.00 0.02 0.92 143
169 697.99 TT. 0.278 0.00 0.21 0.93 116
170 698.27 TT. 0.280 0.00 0.22 0.95 58.7
172 698.82 TT. 0.277 0.00 0.15 0.95 86.6
173 699.10 TT. 0.273 0.00 0.07 0.96 148
174 699.38 TT. 0.297 0.00 0.07 0.96 156
175 699.66 TT. 0.284 0.00 0.04 0.95 132
177 700.22 TT. 0.284 0.00 0.03 0.97 62.3
179 700.78 TT. 0.279 0.00 0.02 0.93 153
180 701.06 TT. 0.278 0.00 0.02 0.88 163
182 701.62 TT. 0.286 0.00 0.01 0.94 68.9
185 702.46 TT. 0.286 0.00 0.02 0.92 154
186 702.74 TT. 0.288 0.00 0.05 0.94 164
190 703.87 TT. 0.276 0.00 0.00 0.96 195
192 704.44 TT. 0.281 0.00 0.01 0.94 204
198 706.14 TT. 0.250 0.00 0.02 0.95 243
201 706.99 TT. 0.253 0.00 0.03 0.92 237
204 707.85 TT. 0.261 0.00 0.02 0.92 258
207 708.71 TT. 0.288 0.00 0.15 0.75 243
210 709.57 TT. 0.294 0.00 0.21 0.92 263
215 711.00 TT. 0.253 0.00 0.19 0.92 298
216 711.29 TT. 0.263 0.00 0.17 0.91 242
221 712.74 TT. 0.256 0.00 0.15 0.90 365
226 714.19 TT. 0.234 0.01 0.04 0.89 419
227 714.48 TT. 0.235 0.01 0.07 0.89 363
232 715.94 TT. 0.255 0.02 0.28 0.88 458
252 721.84 TT. 0.251 0.01 0.26 0.92 413
253 722.14 TT. 0.238 0.01 0.30 0.91 390
256 723.03 TT. 0.240 0.08 0.34 0.84 543
257 723.33 TT. 0.237 0.08 0.34 0.83 545
261 724.52 TT. 0.239 0.11 0.35 0.95 582
262 724.82 TT. 0.240 0.09 0.34 0.97 550
267 726.33 TT. 0.261 0.09 0.34 0.96 552
272 727.83 TT. 0.273 0.09 0.30 0.95 557
295 734.15 TT. 0.312 0.07 0.34 0.96 517
299 735.38 TT. 0.223 0.06 0.35 0.95 502
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chl cm−1 use NE∆T τ↑fixed(Ps) τ↑water(Ps) τ↑ozone(Ps) P (τ = 1
2 )

300 735.69 TT. 0.223 0.07 0.37 0.95 515
305 737.24 TT. 0.258 0.06 0.36 0.92 508
309 738.48 TT. 0.334 0.05 0.34 0.96 517
333 746.01 TT. 0.231 0.34 0.30 0.98 811
338 747.60 TT. 0.328 0.40 0.25 0.98 860
343 749.20 TT. 0.324 0.42 0.26 0.97 883
347 750.48 TT. 0.220 0.46 0.36 0.93 915
362 755.33 TT. 0.221 0.56 0.17 0.97 823
375 759.57 .T. 0.205 0.80 0.43 0.98 952
1304 1238.1 .T. 0.076 0.96 0.53 1.00 surf
1329 1251.4 .T. 0.082 0.78 0.19 1.00 780
1371 1285.5 .T. 0.099 0.72 0.04 1.00 700
1449 1331.0 .T. 0.153 0.98 0.01 1.00 666
1455 1334.6 .T. 0.160 0.98 0.00 1.00 595
1545 1381.2 .T. 0.092 0.97 0.00 1.00 544
1917 2229.6 TT. 0.090 0.01 0.90 1.00 229
1918 2230.5 TT. 0.091 0.01 0.80 1.00 215
1924 2236.2 TT. 0.098 0.00 0.83 1.00 189
1928 2240.0 TT. 0.097 0.00 0.95 1.00 178
2106 2385.2 TT. 0.130 0.00 0.99 1.00 187
2107 2386.2 TT. 0.172 0.00 0.99 1.00 222
2108 2387.2 TT. 0.174 0.00 0.99 1.00 261
2109 2388.2 TT. 0.129 0.00 0.99 1.00 300
2110 2389.1 TT. 0.134 0.00 0.99 1.00 342
2111 2390.1 TT. 0.132 0.01 0.99 1.00 390
2112 2391.1 TT. 0.132 0.03 0.99 1.00 443
2113 2392.1 TT. 0.132 0.07 0.99 1.00 492
2114 2393.0 TT. 0.135 0.11 0.98 1.00 531
2115 2394.0 TT. 0.130 0.16 0.97 1.00 561
2116 2395.0 TT. 0.134 0.19 0.98 1.00 584
2117 2396.0 TT. 0.138 0.21 0.99 1.00 602
2118 2397.0 TT. 0.140 0.23 0.99 1.00 618
2119 2398.0 TT. 0.140 0.24 0.99 1.00 636
2120 2398.9 TT. 0.141 0.26 0.99 1.00 656
2121 2399.9 TT. 0.138 0.28 0.99 1.00 674
2122 2400.9 TT. 0.139 0.30 0.99 1.00 691
2128 2406.9 TT. 0.138 0.35 0.98 1.00 749
2134 2412.8 TT. 0.144 0.40 0.99 1.00 809
2149 2450.3 TT. 0.167 0.57 0.99 1.00 surf
2197 2500.6 TT. 0.220 0.85 0.99 1.00 surf

chl GHz use NE∆T τ↑fixed(Ps) τ↑water(Ps) τ↑LIQ(Ps) P (τ = 1
2 )

3 50.30 TT. 0.250 0.60 0.93 0.99 surf
4 52.80 TT. 0.140 0.17 0.93 0.98 560
5 53.60 TT. 0.200 0.04 0.92 0.98 363
6 54.40 TT. 0.170 0.00 0.92 0.98 221
8 55.50 TT. 0.160 0.00 0.92 0.98 104
9 57.29 TT. 0.160 0.00 0.91 0.98 55.2
10 57.29 TT. 0.220 0.00 0.91 0.98 31.9
11 57.29 TT. 0.240 0.00 0.91 0.98 15.8
12 57.29 TT. 0.350 0.00 0.91 0.98 7.49
13 57.29 TT. 0.480 0.00 0.91 0.98 3.58
14 57.29 TT. 0.800 0.00 1.00 1.00 1.61
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Chapter 9

Practical Issues of Remote Sounding

“A computer lets you make more mistakes faster than any other invention in human history, with the possible
exception of handguns and tequila.” [Mitch Radcliffe via Jeff Whiting]

In a sense the retrieval algorithm is a series of steps. Each step estimates the atmospheric state better.
While one may propose to solve for everything simultaneously, this tends to be absolutely unstable in practice.
Certain steps might be combined (e.g., simultaneous temperature and moisture); however, in general we can
visualize the retrieval system as a collection of steps. In the treatment of clouds the cloud clearing step might
be embedded within the set of steps. Fig. 9.1 illustrates the retrieval system that needs to be developed and
tested.
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Figure 9.1: Illustration of a retrieval system with cloud clearing.
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9.1 Building a Simulation Testbed

In order to evaluate retrieval concepts and prepare for launch, the AIRS science team built a robust simulation
system (Fishbein et al., 2003). Most instrument teams have approached modern systems in this way. The
simulation system must emulate and exercise all physical situations the instrument is likely to encounter.
Forecast models can be used for temperature, moisture, and ozone profiles. Process models and/or in-situ
measurements can be added for trace gases. Models of the Earth’s surface must include variability seen.
Emissivity models require the emulation of snow, ice, vegetation, waves, etc.

The orbit of the satellite is simulated at the correct altitude and the scan properties of the instrument
are projected along an atmospheric column to create the complete atmospheric state within the instrument
field of view (FOV).

One of the first components needed for any retrieval system is a forward model (i.e., computation of
radiances from the geophysical state). This forward model can be utilized to construct simulated radiances.
Instrument noise is simulated and added to these radiances. These components are illustrated in the top part
Fig. 9.2.
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Figure 9.2: Illustration of a simulation system.

The advantage of simulation is that we know the geophysical state. This is never true when considering
real data. There is always representation error (i.e., differences in time or location between the satellite and
in-situ measurements) and additional error induced by the comparison model or measurements. In simulation
we know the truth. Therefore, a necessary component of a simulation system is the ability to visualize and
compute statistics of the simulated radiances, retrieval products, and truth state.

Another advantage of a simulation system is that when a non-linear interference is suspected as a cause
for poor performance the retrieval can utilize information from the “truth” state to test the sensitivity to
those parameters.

In this way, an objective evaluation of retrieval methodology can be performed. Issues such as channel
selection, subtleties in retrieval approaches, and computational efficiency can all be answered prior to launch
of the instrument. In fact, this system can be used to evaluate instrumental design trade-offs and assist in
the evaluation of the impact of post-launch anomalies.
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For missions that are utilized to monitor climate, these simulation systems can be used to test algorithms
and instrumental performance as a function of climate parameters over the life of the mission.

9.1.1 Considerations for adding noise to the spectrum

The simulation of noise requires the use of random number generators to simulate the random components of
noise within an instrument. Most applications require the use of a random number generator with Gaussian
probability density function (see PHYS 640 notes).

On one hand, the best random number generator is desired to truly test the robustness of the retrieval
code. On the other hand, we desire a repeatable random number generator so that the optimization exper-
iments can be reproduced and results from two experiments be reliably compared. Thus, the generation of
noise can become quite complex.

In addition, the non-random component of noise needs to be emulated. For example, apodized interfer-
ometers have spectrally correlated noise. This can be simulated by computing uncorrelated noise and then
apodizing the noise. Efficient operators can be employed (e.g., see Barnet et al., 2000).

9.2 Overview of the retrieval module for a temperature retrieval

1. read in first guess record, Xfg(L)

2. read in measured or simulated radiances, R(n)

3. pick out your subset of channels R(n(m)) from a list (best to read list in from a file). for m = 1,M

4. set X0(L) = Xfg(L) (get initial state from first guess) this is also written as Xi for i = 0.

5. compute R(Xi, n(m)) using forward model. if converged then goto step #9

use SDV(R(n(m))−R(X(i), n(m))) as a convergence test. This should drop quickly and then bounce
around. Therefore, if it decreases slowly or becomes larger the retrieval is converged.

6. compute S-matrix (dR/dT for T (L) perturbation) for all n(m) channels and all functions L = 1, Lbot

and L = 100

7. compute new temperature estimate. For example, for minimum variance the new estimate is given by

T i+1 = T i +
[
S ·N−1 · ST + CV (X)

]−1 · ST ·N−1 · (R−R(X)− S · (X0 −Xi)
)

(9.1)

8. goto step # 5

9. output the new retrieval state

10. if not the last profile, then goto step #1

9.3 Computation of Layer Mean Statistics

The keep the meaning of the statistics as simple and reasonable as possible we convert the 100 fixed pressure
levels to fixed coarse layers that are reasonable close to the thickness intervals specified in the product
specifications. For AIRS we want 1 km statistics layers in the troposphere, and 21

2 km layers from 2 mb to
100 mb. There is little reason to compute statistics above 2 mb, since we have little information content.

For temperature statistics the coarse layers are shown in Table 9.1. The coarse layer i is bounded by
p(L1(i)) on the top and p(L2(i)) on the bottom. The reference and retrieval temperature profiles on the fine
grid levels, T (L), are averaged on to the coarse grid, T̂ (i) on a case by case basis
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T̂ref (i, k) =

L2(i)∑
L=L1(i)

Tref (L, k)

1 + L2(i)− L1(i)
for case k (9.2)

T̂ret(i, k) =

L2(i)∑
L=L1(i)

Tret(L, k)

1 + L2(i)− L1(i)
for case k (9.3)

The statistics are then computed (bias, RMS, and standard deviation) for the coarse grid values. If
topography makes the bottom coarse layer less than 750 meters then it is ignored in the calculation, therefore,
the number of profiles within the lowest few coarse statistics intervals can be significantly less that the total
number of profiles. This can be easily accomplished by computing a weight, W (i, k), which is set to 1 unless
the topography makes bottom layer(s) less than 750 meters, and then it is set to zero..

BIAS(i) =

K∑
k=1

(
T̂ret(i, k)− T̂ref (i, k)

)
·W (i, k)

K∑
k=1

W (i, k)
W (i, k) = 1 for full bottom layers (9.4)

RMS(i) =

√√√√√√√√
K∑

k=1

(
T̂ret(i, k)− T̂ref (i, k)

)2

·W (i, k)

K∑
k=1

W (i, k)
(9.5)

SDV(i) =
√

RMS2(i)− BIAS2(i) (9.6)

Statistics on the coarse layer thicknesses, ∆z(i) should also be computed from the truth (see section 3.5
on computation of height and thicknesses) for validation of the correctness of these coarse layers. In Table
9.1 the results of that computation are shown using the granule “401” ensemble from Sep. 6, 2002.

Note that in these definitions for temperature, the level temperature between coarse layers, T (L1(i) =
T (L2(i− 1)), is used twice. This is because we are computing the layer mean temperature of which the level
temperatures at the extreme ends of the coarse layer contribute to.

In addition, it is useful to compute summary statistics for tabulated summaries. These can be computed
from the coarse layer statistics in Table 9.1. In Table 9.2 we show examples of summary statistics where we
average over i1 ≤ i ≤ i2.

The “effective” pressure for plotting coarse layer statistics is given by

p(i) = exp
(

loge(p(L1(i))) + loge(p(L2(i)))
2

)
for temperature statistics (9.7)
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Table 9.1: 30 layer definition for temperature statistics
p(L1(i)) p(L2(i)) < z(L1(i)) > < ∆z(i) >

i L1(i) L2(i) mb mb meter km % cases
1 1 12 0.005 2.15 75,910 35 100%
2 12 14 2.15 3.34 40,889 3.2 100%
3 14 16 3.34 4.92 37,687 2.7 100%
4 16 17 4.92 5.87 34,970 1.2 100%
5 17 18 5.87 6.95 33,750 1.15 100%
6 18 20 6.95 9.51 32,605 2.1 100%
7 20 21 9.51 11.0 30,506 0.97 100%
8 21 24 11.0 16.4 29,539 2.63 100%
9 24 26 16.4 20.9 26,913 1.56 100%
10 26 30 20.9 32.2 25,357 2.74 100%
11 30 33 32.2 43.1 22,614 1.81 100%
12 33 37 43.1 60.9 20,809 2.14 100%
13 37 41 60.9 83.2 18,668 1.88 100%
14 41 44 83.2 103. 16,782 1.28 100%
15 44 47 103. 125. 15,502 1.20 100%
16 47 49 125. 142. 14,305 0.76 100%
17 49 51 142. 160. 13,542 0.74 100%
18 51 54 160. 190. 12,801 1.07 100%
19 54 57 190. 223. 11,730 1.03 100%
20 57 61 223. 272. 10,705 1.31 100%
21 61 64 272. 314. 9,397 0.94 100%
22 64 66 314. 343. 8,453 0.62 100%
23 66 70 343. 407. 7,836 1.20 100%
24 70 74 407. 478. 6,634 1.16 100%
25 74 77 478. 535. 5,470 0.85 100%
26 77 81 535. 617. 4,621 0.99 99%
27 81 84 617. 683. 3,634 0.75 96%
28 84 88 683. 777. 2,884 0.95 94%
29 88 92 777. 878. 1,930 0.94 90%
30 92 LBOT 878. 1100 994 0.99 73%

Table 9.2: Summary statistics definitions for T (p)
pressure range course layers mean
upper lower i1 i2 < ∆z >

2 32 2 10 2.032
32 314 11 21 1.293
314 684 22 27 0.951
684 1100 28 30 1.018
0 1100 1 30 2.553

103 1100 15 30 0.989
190 1100 19 30 1.002
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9.4 Composition Statistics: Moisture

For moisture, the statistics are also kept for thick layer values. Internally, the moisture and ozone are layer
column densities (molecules per cm2) on the radiative transfer layers.

The column densities are added, not averaged, for the coarse statistics layer.

q̂ret(i, k) =
L2(i)∑

L=L1(i)

qret(L, k) for case k (9.8)

In order to avoid having low moisture regions dominate the statistic, the reference water amount is used
as a weight for the statistics of percent water error.

Coarse layer i is bounded by p(L1(i)) on the top and p(L2(i)) on the bottom. With water the top
layer, at P (L1(i)) represents the layer column density from the TOA (p=0.005 mb) to P (L1(i)). Therefore,
∆CDw(L = 1) is the column density from 0.005 to 0.016 mb. Every other radiative transfer layer represents
the layer column density from p(L− 1) to p(L). If we set L1(i) = 1, L1(i) = 1 + L2(i− 1) for i > 1 then we
do not add water from the layer above p(L1(i)). The error in moisture for coarse layer i is the given by

BIAS(i) =

K∑
k=1

q̂ref (i, k) ·
(

q̂ret(i,k)−q̂ref (i,k)
q̂ref (i,k)

)
K∑

k=1

q̂ref (i, k)
(9.9)

=
BIAS(i) (q̂ret(i, k)− q̂ref (i, k))

BIAS (q̂ref (i, k))
(9.10)

RMS(i) =

√
K∑

k=1

(
q̂ref (i, k) ·

(
q̂ret(i,k)−q̂ref (i,k)

q̂ref (i,k)

))2

√
K∑

k=1

(q̂ref (i, k))2
(9.11)

=
RMS(i) (q̂ret(i, k)− q̂ref (i, k))

RMS (q̂ref (i, k))
(9.12)

The definitions for the AIRS “1-km” and “2-km” water statistics are shown in Table 9.3. By comparing
1-km and 2-km statistics one can estimate the amount of vertical structure in the reference profile, since the
retrievals are usually smoother than 1-km. In addition, statistics can be grouped for thicker vertical regions
for summary charts. It we average the layers from Table 9.3 into coarser bin’s we can get statistics with the
characteristics of

When making figures for talks it is useful to draw the boundaries of the coarse layers. For moisture, the
top level of the layer is the top of the layer column density, p(L1(i) − 1) (remember the implicit definition
p(0)≡0.005) whereas for temperature layers the layer is defined from p(L1(i)) to p(L2(i)). The values of
coarse layer errors are plotted at the average pressure level within the layer, not the boundary pressures.

p(i) = exp
(

loge(p(L1(i))− 1) + loge(p(L2(i)))
2

)
for water statistics (9.13)

In Fig. 9.3 an example of a comparison of four retrievals is shown. There are 2 runs, each run is showing a
microwave-only retrieval as a dashed curve and an coupled infrared/microwave retrieval as a solid curve. The
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Table 9.3: Layer definitions for 1-km & 2-km water statistics
1 km statistics 2 km statistics

top bottom bottom top bottom bottom
layer layer level ∆z(i) layer layer level ∆z(i)

i L1(i) L2(i) p(L2(i)) km L1(i) L2(i) p(L2(i)) km
1 1 16 4.9 41.3 1 55 201 65
2 17 20 9.5 4.5 56 64 314 2.9
3 21 23 14 2.75 65 70 407 1.8
4 24 29 29 4.5 71 76 516 1.7
5 30 37 61 4.6 77 81 618 1.4
6 38 44 103 3.2 82 85 707 1.1
7 45 49 142 2.0 86 91 853 1.5
8 50 52 170 1.1 92 LBOT 1100 1.2
9 53 55 201 1.1
10 56 58 235 1.0
11 59 63 300 1.6
12 64 67 359 1.2
13 68 70 407 0.9
14 71 72 441 0.6
15 73 76 516 1.1
16 77 80 596 1.1
17 81 85 707 1.3
18 86 89 802 1.0
19 90 93 905 1.0
20 94 LBOT 1100 0.93

Table 9.4: Summary Statistic Averaging Layers for 1-km & 2-km water statistics
1 km statistics 2 km statistics

pressure range course layers mean pressure range course layers mean
upper lower i1 i2 < ∆z > upper lower i1 i2 < ∆z >
201 407 10 13 1.184 201 314 2 2 2.9
407 596 14 16 0.941 314 618 3 5 1.6
596 1100 17 20 1.065 618 1100 6 8 1.2
201 1100 10 20 1.074 201 1100 2 8 1.650

2 runs are plotted in black and red to allow quick comparison of the improvements made. In this example, a
damping parameter was changed which improved results in the mid-troposphere and the stratosphere (where
the black curve is less than the red curve).
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Figure 9.3: Example of a retrieval inter-comparison: RMS plots.

Table 9.5: Layer definitions for ozone statistics
L1(i) L2(i) p(L2(i)) ∆z(i)

1 12 2 35
13 15 4 4.6
16 19 8 4.8
20 24 16 4.6
25 30 32 4.3
31 38 66 4.5
39 47 126 3.9
48 60 260 4.6
61 LBOT 1100 9.6
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Chapter 10

Use of Eigenvectors in Remote
Sounding

Last night I had a dream
You were in it, I was in it with you.
Everyone that I know, and everyone that you know were in my dream.

Saw a vampite.
Saw a ghost.

Everyone scared me, but you scared me the most. (lyrics from Randy Newman song)

Eigenvector decomposition has many uses in remote sounding and are covered in many sections of these
notes. Some of the topics will be covered in this chapter; however, many are discussed elsewhere. Here is a
list of topics and the sections of these notes that covers them.

• Determination of the information content or degrees of freedom in a measurement, Section 10.2.2.

• Removal of random noise component in a set of measurements, Section 10.3.

• Data compression and archival of data, Section 10.5

• Monitoring of an instrument or quality of a measurement, Section 10.4.

• Regularization of a matrix inversion, see Section 11.5 in Chapter 11 and Section 21.5 in Chapter 21

• Use of uncorrelated error estimates is discussed in Section 7.6 in Chapter 7 and and Section 21.11 in
Chapter 21

• Reduction of the dimension of matrix operators to speed up operational code.

• Replacing bad or missing observations, see Section 11.5.5 in Chapter 11.

287
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10.1 Definition of Left and Right Eigenvectors

This section is from Rodgers (2002, Apdx. A (p. 199-201).

For an arbitrary square (I=J) matrix, Ai,j the eigenvector, Rj,k, and eigenvalues, λk, are given by

Ai,j ·Rj,k = Rj,k · λk (10.1)

This can be written as a matrix equation by assembling the eigenvalues into the diagonal of a 2-d matrix

Ai,j ·Rj,k = Rj,k · Λk,k (10.2)

The vectors and values of A′ can be found by transposing the equation

R′
k,j ·A′

j,i = Λk,k ·R′
k,j (10.3)

If we define a “left” operator, Lj,k, to operate on the transposed equation and utilize Eqn. A.44

Lj,k ≡
(
R′

k,j

)−1 =
[
Rj,k ·R′

k,j

]−1 ·Rk,j (10.4)

then pre-multiplying by Lj,k and post-multiplying by Lj,k will yield

Lj,k ·R′
k,j ·A′

j,i · Lj,k = Lj,k · Λk,k ·R′
k,j · Lj,k (10.5)

A′
j,i · Lj,k = Lj,k · Λk,k (10.6)

Thus, Lj,k is a matrix or normalized eigenvectors that are the left eigenvectors because they operate on
A, (L′

k,j · Aj,i = Λk,k · L′
k,j), while Rj,k are the right eigenvectors because they operate on the right of A,

(Ai,j ·Rj,k = Rj,k · Λk,k). We can express A in terms of its eigenvectors as

Ai,j = Rj,k · Λk,k · L′
k,j (10.7)

which is described as the spectral decomposition of A.
In the case of a symmetric matrix, S, where S′

j,i ≡ Si,j we must have Rj,k = Lj,k so that L′
k,j ·Lj,k = Ik,k

and Lj,k · Lk,j = Ij,j . This also implied L′
k,j = (Lk,j)

−1 and the eigenvectors are orthonormal and all real.

10.2 Information Content of a Spectrum

In 1976 Smith and Woolf published techniques to employ the use of eigenvector methods in remote sounding.

10.2.1 Definition of a centered signal-to-noise (S/N)

Signal-to-noise, defined below, is more linear w.r.t. temperature than radiance. In addition, if we wish to
utilize the 4 µm and 15 µm together, signal-to-noise removes the 2 orders of magnitude difference in radiance
between these two bands. The average of the radiance, R(n, k), for an ensemble of k = 1,K cases is given by
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Figure 10.1: H. L. “Allen” Huang, Bill Smith Sr., Graeme Kelly, and John LeMarshall (courtest of Bill Smith)

< R > (n) =
1
K

K∑
k=1

R(n, k) (10.8)

and the signal to noise can be defined using the instrument NE∆N(n), which is usually the measured standard
deviation of an internal black body.

∆Θ(n, k) ≡ R(n, k)− < R > (n)
NE∆N(n)

(10.9)

The covariance of the ensemble is given by

∆Θ∆ΘT (n, n′) =
1
K

K∑
k=1

∆Θ(n, k) ·∆Θ(n′, k) (10.10)

This computation should be done in double precision. Round-off error can become significant in large
summations (K ≥ 5000). The result can be stored as single precision, if desired. Note that ∆Θ∆ΘT (n, n′)
is square symmetric matrix, such that

∆Θ∆ΘT (n, n′) = ∆Θ∆ΘT (n′, n) (10.11)

such that

a) only computing one side of the off-diagonals will be faster ⇒ especially in MATLAB.

b) Round off errors will make the matrix asymmetric, which will add errors in the next steps of the
homework.
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If is useful to visualize ∆Θ∆ΘT (n, n′); however, for instruments such as AIRS the number of channels
(2378x2378) makes this difficult. There is also a large dynamic range of correlation and there is both positive
and negative correlation. Therefore, it is important to retain the sign of the numbers. In Fig. 10.2 we have
chosen to represent only the 15 µm and 4.3µm regions and ignore the rest for the figure. This reduces the
matrix to a manageable size, 635x635. The logarithm of the absolute value was used to stretch the color
scale.

In the top panel of Fig. 10.2 the average radiance,< R > (n), expressed in brightness temperature
units, B−1

ν(n)(< R > (n)), is shown for the selected channels. The array indexing (FORTRAN style) is such
that channels 2001-2135 are located in index positions 501-635. The bottom panel shows the signal-to-noise
covariance for the 15µm and 4.3µm band. The diagonal runs from the lower left (for long-wave) to the upper
right (for showrt-wave). Negative numbers are shown as shades of blue. Positive numbers are represented
from green, to yellow, to orange, to red as the correlation increases.

The 667 cm−1 (index = 80) region is strongly anti-correlated with the rest of the 15 µm band. This
region is part of the ν2 Q-branch and sounds near 10 mb (see In Fig. 8.5) The CO2 ν3 P-branch correlates
with the ν2 Q branch and anti-correlates so strongly with the ν2 P & R branches because it is also sounding
the stratosphere. The stratosphere and troposphere are anti-correlated, as seen in Fig. 8.19. This probably
is because

• The stratosphere is in emission and the troposphere is in absorption, therefore, the stratosphere tends
to be cooling when the troposphere is warming.

• The stratosphere represents a low density, high temperature region and therefore has a low radiative
time constant. The troposphere has enhanced specific heat due to water content and with its larger
density has a larger radiative time constant, therefore, the troposphere can have a large (up to 6 hour)
phase lag with the diurnal thermal structure (see Section 2.7).

The checkerboard pattern near 720-750 cm−1 (index 250-350) is due to the fact that the CO2 spectrum
in this region tends to have strong line structure and the cores of lines tend to have weak correlation with
the adjacent wings.
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Figure 10.2: Signal-to-noise covariance matrix for AIRS post-launch eigenvector regression. (see text in
Section 10.2
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10.2.2 Properties of the eigenvectors of signal-to-noise

The eigenvectors of a square symmetric covariance matrix, ∆Θ∆ΘT (n, n′), are given as

U(n,m) · Λ(m) · UT (m,n) = ∆Θ∆ΘT (n, n′)· (10.12)

where the eigenvalues, λ(m), are given by the elements of the diagonal matrix, Λ(m,m). In the IDL routines
D(m)≡ λ(k) and U(n,m) ≡ U(n,m).

IDL the commands are

U = DOUBLE(rcov) ; U(n,n) = S/N covariance, initially
trired, U, D, E ; D, E are work arrays
triql, D, E, U ; D(m), U(n,m) are the eigenvalue,vectors

The eigenvectors, U(n,m), are orthogonal to the other eigenvectors, U(n,m′). That is,

UT
m,n · Un,m′ =

∑
n

U(n,m) · U(n, j) = 1 when m = m′

= 0 when m �= m′

(10.13)

And it follows that the inner product of eigenvectors is also orthogonal.

UT
m,n · Un,m′ = Im,m′ (10.14)

Un,m · UT
m,n · Un,m′ · UT

m′,n = Un,m · Im,m′ · UT
m′,n(

Un,m · UT
m,n

) · (Un,m′ · UT
m′,n

)
= Un,m · UT

m′,n(
Un,m · UT

m,n

)
= In,n (10.15)

such that we could have written Eqn. 10.12 as

Λ(m) = UT (m,n) ·∆Θ∆ΘT (n, n′) · U(n,m) (10.16)

In Fig. 10.3 the eigenvalues, λ(m), of Fig. 10.2 are shown as a function of index m. In Fig. 10.4 the
top 100 eigenvalues are shown. For AIRS the number of pieces of information is on the order of 85-100 as
determined by the “knee” in Fig. 10.4. The characteristic of noise is that it drops off slowly with eigenvalue
index.

In Fig. 10.5 through Fig. 10.9 selected eigenvectors are shown. These eigenvectors, Un,m are plotted
with respect to frequency, f(n), to illustrate which channels are being combined in the linear combinations.

74 667.52
210 709.57
264 725.42
267 726.33
368 757.28
2104 2383.28
2107 2386.20
2110 2389.14
1105 1056.58
1407 1306.10
1750 1520.39
1800 1567.89
1850 1603.59
1866 2182.40
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Figure 10.3: Eigenvalues for AIRS clear scenes.

• From looking at which eigenvectors are associated with the first group of channels, and knowledge
from your analysis from homework #4 for channels #210,264,267,368, can you tell which eigenvectors
contribute to the sounding of the stratosphere, 600 mb region, and 900 millibar region?

• Do the CO2 ν3 sounding channels contribute to the same eigenvectors? Why or why not?

• The second group of channels are within the sounding regions of ozone (# 1105), methane (#1407), wa-
ter (#1750-#1850) and carbon monoxide (#1866). Can you identify which eigenvectors are associated
uniquely with each of these gases?

• Who does ozone (#1105) and water channels (#1306,#1520) show up with temperature sounding
eigenvectors that utilize the 710-750 cm−1 region.
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Figure 10.4: Top 100 eigenvalues for AIRS radiances in clear scenes normalized by the AIRS instrument
noise. Eigenvalues ≤ 1 have are at the noise level.

Figure 10.5: AIRS eigenvectors, U(n,m), for m=1,5. While eigenvectors are a combination of geophysical
parameters U(n, 1) is dominated by Ts, U(n, 2) has components of εLW − εSW , U(n, 3) has mid-tropospheric
water, U(n, 4) has O3 and T (p), U(n, 5) has low tropospheric water.
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Figure 10.6: AIRS eigenvectors, U(n,m), for m=6,10. Influence of ozone can be seen in U(n, 7)

Figure 10.7: AIRS eigenvectors, U(n,m), for m=11,15. A high-order influence of ozone can be seen in
U(n, 15)
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Figure 10.8: AIRS eigenvectors, U(n,m), for m=16,20

Figure 10.9: AIRS eigenvectors, U(n,m), for m=85,89. These eigenvectors characterize the instrument noise
and do not contain any signature of the geophysical parameters.
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Figure 10.10: The transpose of normalized eigenvectors log10 (λ(m)) · U(m,n) for selected channels. In this
figure the long-wave temperature sounding channels are shown.

Figure 10.11: The transpose of normalize eigenvectors log10 (λ(m)) · U(m,n) for selected channels. In this
figure the short-wave temperature sounding channels, ozone channel, and methane channel are shown.
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Figure 10.12: The transpose of normalize eigenvectors log10 (λ(m)) · U(m,n) for selected channels. In this
figure the carbon monoxide (2182 cm−1) and water band channels are shown.
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10.2.3 SIDEBAR: Why build instruments with so many channels?

Modern instruments, such as AIRS, IASI, and CrIS, make measurements with a large number of spectral
channels. The high spectral resolution allows atmospheric absorption lines to be nearly resolved, such that
there is a large redundancy in the spectrum. The AIRS instrument, for example, has many channels that are
sounding the same atmospheric region. Interferometers, such as IASI, have many thousands of channels.

A question usually raised by managers and the public is ”if AIRS only has 85 pieces of information, why
are there 2378 channels”. There are many issues. First of all, a clarification: there are about 85 pieces of
information in simulation of clear scenes. Real data is cloudy and has a larger number due to variability of
species not considered in simulation. Still, the number of significant eigenvalues is about 100 when considering
clouds, volcanoes, or other special situations.

Figure 10.13: The AIRS M12 array of photo-conductive detectors

First, linear detector arrays are cheaper than wiring up individual detectors. The linear array can be
”clocked into a single amplifier, therefore, if you want 1 channel it might be as cheap to get 100 channels.
Individual detectors require more wiring and therefore the detectors are usually larger and have bigger space
in-between. Thus, linear arrays can, in fact, be better since smaller size means less noise. In Fig. 10.13 the
M12 array (photo-conductive (PC) individual detectors on a linear array) is shown. In Fig. 10.14 the M4
array (a linear array of photo-voltaic (PV) detectors) with a sequential read-out integrated circuit (ROIC)
is shown. In Fig. 10.15 the entire AIRS focal plane is shown and it can be seen that the 200 PC channels
(M11,M12) require as much wiring (ribbon cables coming off those two chips) as the 2500 PC (linear array)
detectors. Additional wiring increases thermal conductivity that required more cooler power, therefore, we
cannot run the detectors as cold as we might like. The detectivity, D*, is a strong function of temperature,
therefore, PV linear arrays mean less cooler, lower temperature, and better signal to noise.

Secondly, there are calibration issues. We use many channels to calibrate the frequency centroids of the
channels. So while wings on lines might be most suitable for sounding, the cores of many lines are useful for
calibration. With linear arrays we get our calibration channels with little additional cost.

Third, the extra channels are risk reduction. Failures do occur in space over the life of a mission. With
AIRS we have selectivity such that we can adjust the grating to place the critical channels onto the detectors
we want.
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Figure 10.14: The AIRS M4 array of photo-voltaic detectors with built in read out integrated circuit

Finally, there is the issue of signal to noise. While there is redundancy in the information content, having
many channels can improve the S/N of the measurement. Close inspection of the eigenvectors will show than
many channels contribute to each of the significant eigenvectors. The noise reduction and redundancy that
allows replacing bad channels with eigenvector methods requires that extra channels exist.



Chapter 10: Eigenvectors Chris Barnet August 30, 2006 301

Figure 10.15: The complete AIRS proto-flight focal plane
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10.3 Reduction of Random Noise

The Principal Component Score (PCS) of a centered signal to noise measurement is defined as

PCSm ≡ 1√
λm

· UT
m,n ·∆Θn (10.17)

We can reconstruct the radiances using the orthogonal properties of the eigenvectors. If we multiply both
sides by Un,m ·

√
λm then we obtain

∆Θ̃n ≡ Un,m ·
√
λm · PCSk = Un,m · UT

m,n ·∆Θn = ∆Θn (10.18)

If all M = N eigenvectors are used then ∆Θ̃n = ∆Θn, but if only the significant eigenvectors are used,
M < N , then the reconstructed radiances ∆Θ̃n have reduced noise. The reduction in noise is dependent on
the redundancy within the spectrum. For AIRS the 2378 channels can be adequately represented by 80-100
PCS’s. This means there is a 24:1 redundancy in the AIRS spectrum. If we use Eqn. 10.9 we can see that
reconstructed radiance is given by

R̃n ≡ NE∆Nn ·
(
Un,m ·

√
λm · PCSm

)
+ < Rn,k >k (10.19)

If we compute the standard deviation of Rn,j − R̃n,j for and ensemble of J cases. If the value of M is
chosen properly then this will be equal to NE∆Nn.

SDV
(
Rn,j − R̃n,j

)
j
� NE∆N(n) (10.20)

SDV
(
Rn,j − R̃n,j

)
j

NE∆N(n)
� 1 (10.21)

10.4 Monitoring Spectra and/or Bad Channels

The reconstructed radiances can be a useful tool for monitoring data from hyper-spectral instruments. If we
compute standard deviations of measured minus reconstructed radiances we can monitor individual spectra
or individual channels. Here are some applications

• Compute QA(j) for a single spectrum, j. If it is significantly larger than unity then that spectrum

– Has BAD channels or calibration problems.

– Has a spectral feature (e.g., spectra of volcanic gases) not seen in the training.

QA(j) = RMS

[
(Rn − R̃n)
NE∆N(n)

]
n

(10.22)

• Compute RMS(Rn,j − R̃n,j)/NE∆N(n) over an ensemble of J cases. Any channel that departs signifi-
cantly from unity has problems.

QA(n) =
RMS

[
(Rn,j − R̃n,j)

]
j

NE∆N(n)
(10.23)
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10.5 Data Compression using PCS’s

Each “granule” (6 minutes) of AIRS data contains 1350 sets of 9 AIRS spectra or 12150 spectra per granule.
Each spectra contains 2378 words (1 word/channel). Thus 12150 spectra = 28,892,700 words (usually 32 bit
real). If we save 100 eigenvectors then we need 237,800 words (0.82%) to save the eigenvectors and 100*12150
= 1,215,000 words (4.2%) to save the PCS’s so that we need 1,452,800 words (5.03%) to save the significant
amount of information. If a static eigenvector were computed and saved off-line, then we could save roughly
half the storage and have a compression of data on the order of 30:1.

There is a significant trade-off here. If eigenvectors are computed for each granule it costs significant
computational resources (≈ 4 cpu’s to keep up to the 6 minutes/granule) and we have to save the eigenvectors
for each granule, but as we saw this is less than 1% of the size of the radiances in that granule. But the
variance within a single granule is significantly less than the eigenvectors for a full day discussed in the
sections above. Therefore, computation of eigenvectors for a single granule is expensive computationally but
usually only 20-50 eigenvectors are needed to be saved. This is on the order of 1-2% of the size of the original
radiances. Additionally, the eigenvector of the single granule would contain all the information content of that
granule. If there was a rare event, such as a volcano, the spectra would retain that feature Similarly, if the
instrument characteristics were to change with time then the static eigenvector would need to be periodically
updated, whereas the granule eigenvector would evolve with the instrument.

If we save eigenvectors less frequently we need less storage, but static eigenvectors will be corrupted
by the infrequent events, such as release of volcanic gases or calibration issues. Also, the net storage is not
affected significantly because we need more eigenvectors to represent the variance in a single orbit or day’s
worth of data.
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Chapter 11

Statistical Regression

Experience is what you get when you don’t get what you expect. Jimmy Wojcik Sep. 6, 1992

11.1 Understanding the Linear Regression Relationship

The work described in this section was performed by Jennifer Marbourg during her senior year (May
1998) at Eleanor Roosevelt High School (ERHS) while working at Goddard Space Flight Center as part of
the ERHS Research Practicum Internship Program.

Figure 11.1: Snapshot of Jennifer Marbourg upon graduating in 1998

Linear equations have some interesting characteristics which at first sight may appear counter-intuitive.
We will show some examples with linear regression techniques used in the Earth sciences where a large number
of observations are used to determine a small number of geophysical parameters. In practice, observed
noisy radiances are regressed against observed geophysical “truth”, such as radiosondes (weather balloon

304
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launches), ground stations, and aircraft measurements. Here we will use simulated noise to illustrate the
linear relationships.

We begin with an ensemble of “known” geophysical parameters, G(L, k), where k is an index for one of
the K “known” cases and L is an index of one of the NL geophysical parameters (e.g., Ts, T (p), q(p), O3(p),
etc.).

Geophysical
State

R
Convolution

Instrument
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Gaussian

Noise(f)

Distribution

NEDT(n)

Characteristics

Instrument

RR (n)
0

X (i)

(n)
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Figure 11.2: Illustration of the “Forward Computation”, that was the generation of radiances from atmo-
spheric data.

We compute channel averaged radiances, R(n, k) for these K known cases using the most robust forward
physics we can compute. The forward computation for an instrument channel n will be denoted simply as
f(G(L, k), n). We compute the radiances for our “known” ensemble with a noise model

R(n, k) = f(G(L, k), n) + NE∆N(n) · r(n, k) simulated noisy radiances (11.1)

where r(n, k) is a random number for case k and channel n with a Gaussian distribution (a statistical standard
deviation of one and a statistical average of zero). We assume that a reasonable statistical estimate of the
atmosphere can be given by a linear combination, a(nj), of the radiances and we use the known ensemble to
“train” the regression. For example, if the first item in GL,k was surface temperature, Ts, we could write

G(1, k) ≡ Ts(k) = a(0) +
N∑

n=1

a(n) ·R(n, k) (11.2)

where a(0)anda(n) is solved for via least-squares in the same manner as described in the PHYS 640 notes,
Chapter 13. In general, we can solve for all the NL geophysical parameters simultaneously in a matrix form;
however, the results are identical to solving the NL equations independently. For example, imagine we had a
set of surface temperature observations, Ts(k), temperature profiles, T (L, k), and moisture profiles, q(L, k),
L = 1, NL, and k = 1,K, where L is the number of atmospheric levels and K are the number of individual
cases. We can construct G(L, k) and relate it to a set of simultaneous instrument measurements R(n, k) for
n = 1, N channels as follows
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G(L, n) =




Ts(1) Ts(2) . . . T s(K)
T (1, 1) T (1, 2) . . . T (1,K)
. . . . . . . . . . . .

T (L, 1) T (L, 2) . . . T (L,K)
q(1, 1) q(1, 2) . . . q(1,K)
. . . . . . . . . . . .

q(L, 1) q(L, 2) . . . q(L,K)




i,n

(11.3)

=



A10

A20

. . .
AI0


+



A11 A12 . . . A1J

A21 A22 . . . A2J

. . . . . . . . . . . .
AI1 AI2 . . . AIJ


 ·


R(1, 2) R(1, 2) . . . R(1,K)
R(2, 2) R(2, 2) . . . R(2,K)
. . . . . . . . . . . .

R(N, 2) R(N, 2) . . . R(N,K)




= AL,0 +AL,n ·Rn,k for n = 1, N (11.4)

It is best to “center” the regression about the average geophysical state of the “known” ensemble and
about the ensemble average of the radiances so that we do not have to solve for a(0) in Eqn. 11.2 or AL,0 in
Eqn. 11.3.

GL ≡ 1
K

K∑
k=1

G(L, k) and Rn ≡ 1
K

N∑
k=1

R(n, k) (11.5)

We will denote the “centered” set of radiances with noise as R̃

R̃n,k ≡ R(n, k)−Rn (11.6)

so that Eqn. 11.3 can be written matrix notation about the ensemble mean values as

GL,k = GL +AL,n · R̃n,k (11.7)

11.1.1 Baseline Experiment #1: Training with radiances including noise

Our baseline experiment will utilize a matrix of the form of Eqn. 11.2 to solve for all I parameters simulta-
neously

GL,k = GL +A1
L,n · R̃n,k (11.8)

where A1
L,n is the regression matrix for this experiment, #1 denoted by the superscript, and is computed

from an ensemble of N “known” cases by the method of least-squares

A1
L,n =

(
GL,k −GL

) · R̃′
k,n ·

[
R̃n,k · R̃′

k,n

]−1

(11.9)

In Fig. 11.3 we show the regression operator, A1
L,n for a regression of 66 levels of T (p) versus the 19

channels in the Aqua AMSU and HSB instruments. The “peak” of the channels weighting function can be
seen to move up the atmosphere. AMSU Chl’s 1,2,3,15 and HSB Chl. 2 are surface channels, AMSU Chl.
4-14 sound sequentially from the surface to the 50 mb region, and Chl. 3 to 5 on HSB are water sounding
channels. Notice how the regression coefficients resemble the Kernel functions shown in Figure 8.4.
Note that in the event that

[
R̃n,k · R̃′

k,n

]
is not well behaved, eigenvector decomposition can be used to

stabilize the solution. For these experiments, assume this matrix is well behaved and the the inverse exists.
The error of the training ensemble operating back on itself is a gauge of the error of linearization of the

problem. Therefore, we use Eqn. 11.8 on the training dataset to obtain,

G1
L,k ≡ GL +A1

L,n · R̃n,k (11.10)
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Figure 11.3: Plot of the “A” matrix for a regression between vertical temperature profile, T (p), and microwave
radiances. Notice how the coefficients, displayed in this manner, resemble Kernel functions for these channels.

The error between the training profiles, GL,k, and the profiles retrieved from the training ensemble, G1
L,k, is

given by the standard deviation which for large N , is given by (SDV2 = RMS2 - MEAN2) or

E1
L =

√√√√ 1
N

N∑
n=1

(G1
L,k −GL,k)2 −

(
1
N

N∑
n=1

(G1
L,k −GL,k)

)2

(11.11)

Moisture is computed in an analogous manner. The layer column densities are in a fractional sense, that is

E1
L =

√√√√ 1
N

N∑
n=1

(
G1

L,k −GL,k

GL,k

)2

−
(

1
N

N∑
n=1

G1
L,k −GL,k

GL,k

)2

(11.12)

For this experiment, the training ensemble was approximately 8000 radiosonde profiles from 1988. The
error in the retrieval can be compared to the standard deviation within the training ensemble itself. This is
given by

EL =

√√√√ 1
N

N∑
n=1

(GL,k −GL)2 (11.13)

One can consider EL to be the standard deviation of the error of a “retrieval” equal to GL. Then E1
L is the

standard deviation of the error of a retrieval in which we add the regression operator.
In Figure 11.4, the standard deviation or the retrieval results, defined by Eqn. 11.11, of the retrieval

results are shown (solid line) along with the standard deviation of the ensemble, defined by Eqn. 11.13
(dashed line). Also shown are the error of the profiles averaged over the AIRS science team standard coarse
layers (dashed-dot and dotted, respectively), which is not relevant for the discussion in this chapter. The
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standard deviation of the retrieved data, σc, was less than the standard deviation of the known ensemble,
σk. This indicates that the regression computation worked well.

Figure 11.4: Example of regression errors when the regression is applied to the 1988 radiosonde training
dataset

The regression matrix can be applied to an independent ensemble (called “unknown”) of radiances with
noise, centered about the training ensemble average, GL, and associated with an “unknown” (different) set
of profiles. For simulation of the “unknown” cases we can use

R̃n,u = f(GL,u, n) + NE∆T(n) · r(n, u)−Rn (11.14)

to get a computed set of profiles with our regression matrix, A1
L,n

G1
L,u = GL +A1

L,n · R̃n,u (11.15)

The error in the regression computation is given by the standard deviation of the difference between the
profiles computed via regression, G1

L,u, and the “known” profiles used to compute the radiance ensemble in
Eqn. 11.14, GL,u using the forward problem (Eqn. 11.14). The independent dataset is approximately 8000
radiosonde profiles from 1989. The standard deviation for this ensemble is given by of the errors is then given
by

E1u
L =

√
RMS2 − BIAS2 (11.16)

E1u
L =

√√√√ 1
U

U∑
u=1

(G1
L,u −GL,u)2 −

(
1
U

U∑
u=1

(G1
L,u −GL,u)

)2

(11.17)

E1u
L represents the fitting error, which incorporates the errors due to linearization of the forward problem

and the error due to poor statistics in the training ensemble. In practice, careful comparison of this E1u
L and

E1
n should always be done. In Fig. 11.5 we show the standard deviation of the retrieval (solid line) along with

the standard deviation of the independent dataset (dashed line, analogous to Eqn. 11.13). Notice, that while
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the statistics change for the ensemble (the 1989 radiosonde set is different than 1988) the retrieval statistics
is practically the same as in Fig. 11.4. Therefore, this regression retrieval is stable.

Figure 11.5: Example of regression errors when the regression is applied to an independent dataset (the 1989
radiosonde dataset)
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11.1.2 Experiment #2: Training with radiances without noise: weighted versus
unweighted

It is a common practice to “train” the regression matrix with simulated noise free measurements. This
experiment is designed to test if this methodology is acceptable. We will compare two experiments, both
using simulated radiances generated without noise (analogous to Eqn. 11.1)) and centered about the ensemble
mean of the training ensemble (Eqn. 11.6)

R̂n,k ≡ f(G(i, n), n)− 1
N

N∑
n=1

f(G(i, n), n) simulated noise− free radiances (11.18)

The first experiment (2a) uses the unweighted regression training equation

GL,k = GL +A2a
L,n · R̂n,k (11.19)

Figure 11.6: Plot of the “A” matrix for a temperature profile and microwave radiance regression in which
radiances were noise-free. Notice the increased structure compared to Fig. 11.3

Compare Fig. 11.6 and Fig. 11.3. The vertical structure of the AL,n matrix for most of the temperature
sounding channels (AMSU Chl. 4-14) is overlapping and the regression operator is trained to believe a
significant amount of fine structure.

If we only look at the statistics w.r.t. the training ensemble, comparing Fig. 11.6 to Fig. 11.3, we might
conclude that the noise-free training is a good idea. The stratospheric retrieval is markedly improved. Since
these errors are a result of both instrument noise and modeling a non-linear equation with a linear regression,
we can see from this comparison that the stratospheric errors must be dominated by instrument errors (only
3-4 AMSU channels are contributing to the information content here).

The unstable behavior of this training with noise-free radiances on the independent (1989 radiosonde)
dataset can be seen by comparing Fig. 11.8 to Fig. 11.5. Notice that the regression error (standard deviation)
is larger than the original standard deviation of the ensemble.
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Figure 11.7: The retrieval errors of a regression trained without noise on the training dataset (regression
matrix A2a

L,n). These results look better that the regression trained with noisy radiances (Fig. 11.4)

The second experiment (2b) uses the same radiances, but will weight them by the inverse of the noise
covariance matrix

GL,k = GL +A2b
L,n ·

(
Wj,j · R̂n,k

)
(11.20)

The results of these two experiments were determined numerically to be identical. This can be understood
in terms of

A2b
L,n =

(
GL,k −GL

) · (Wj,j · R̂n,k

)′
·
[(
Wj,j · R̂n,k

)
·
(
Wj,j · R̂n,k

)′]−1

=
(
GL,k −GL

) · R̂′
k,n ·W ′

j,j ·
[
Wj,j · R̂n,k · R̂′

k,n ·W ′
j,j

]−1

=
(
GL,k −GL

) · R̂′
k,n ·W ′

j,j ·
[
W ′

j,j

]−1 ·
[
R̂n,k · R̂′

k,n

]−1

· [Wj,j ]
−1

=
(
GL,k −GL

) · R̂′
k,n ·

[
R̂n,k · R̂′

k,n

]−1

· [Wj,j ]
−1 = A2a

L,n · [Wj,j ]
−1 (11.21)

The regression results for the two unknown cases will be identical since W−1 cancels W in Eqn. 11.20 and
is, therefore, equal to Eqn. 11.19. Then

G2b
L,u = G2a

L,u (11.22)
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Figure 11.8: The retrieval errors of a regression trained without noise on an independent dataset (regression
matrix A2a

L,n). This result is significantly worse than Fig. 11.5. This regression is so unstable it is degrades
even beyond the standard deviation of the ensemble.

Therefore, the use of noise-free simulated measurements for training a regression is a BAD idea.
Numerical experiments using unknown ensembles show that training with noise-free radiances pro-
duces a matrix which is over-sensitive to instrument noise. When this matrix is used on noisy “un-
known”ensembles the results are terrible even though this matrix can reproduce the training dataset
very well (i.e., the errors, En, are quite low, but the errors Eu are quite high). Therefore, the training
(i.e., known) dataset must include radiances with a reasonable noise distribution.
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11.1.3 Experiment #3: Radiances weighted inversely to noise

This experiment is analogous to experiment # 2b except it uses the noisy radiances.
Some instrument channels have less noise than others and one might assume that the regression method

would work better if we “trained” the regression matrix on signal-to-noise, rather than just on signal. In-
strument channel noise is assumed to be random and uncorrelated with other channels. The instrument
designers usually provide the community with a standard deviation of the expected noise, which is given in
noise equivalent radiance and is called NE∆N(j). Signal-to-noise is given by R(j, n)/NE∆N(j) and we can
write a general regression equation from measurements with noise (R̃n,k) as

GL,k = GL +A3
L,n ·

(
Wj,j · R̃n,k

)
(11.23)

where the weighting matrix is a square symmetric matrix. The elements of W (j, j′) are related to the inverse
of the channel noise covariance, W (j, j′) =

√
N−1(j, j′). In the case where the channel noise is uncorrelated

the weight matrix will be a diagonal matrix with values equal to W (j, j′) = δj,j′/NE∆N(j), where δn,m is
the Kronecker delta function (equals 1 when j = j′, otherwise zero).

We will also need two linear algebra identities. They are

(A ·B)′ = B′ ·A′ (CRC 26thEd. pg. 28, Eqn. 2.5) (11.24)

and

[A ·B · C]−1 = [C]−1 · [B]−1 · [A]−1 (CRC 26thEd. pg. 33, Eqn. 6.2) (11.25)

As seen by comparing Figure 11.9 to Figure 11.5, there was no significant change in variance between
a retrieval done with channel weighting and one done without. In both cases, the radiances had simulated
instrument noise.

Figure 11.9: Example of a regression where channel weighting was used

Numerically, we find that the weighted regression matrix, A3
L,n, is related to the unweighted regression

matrix, A1
L,n (Eqn. 11.9), and this can be understood as follows
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A3
L,n =

(
GL,k −GL

) · (Wj,j · R̃n,k

)′
·
[(
Wj,j · R̃n,k

)
·
(
Wj,j · R̃n,k

)′]−1

=
(
GL,k −GL

) · R̃′
k,n ·W ′

j,j ·
[
Wj,j · R̃n,k · R̃′

k,n ·W ′
j,j

]−1

=
(
GL,k −GL

) · R̃′
k,n ·W ′

j,j ·
[
W ′

j,j

]−1 ·
[
R̃n,k · R̃′

k,n

]−1

· [Wj,j ]
−1

=
(
GL,k −GL

) · R̃′
k,n ·

[
R̃n,k · R̃′

k,n

]−1

· [Wj,j ]
−1 (11.26)

A3
L,n = A1

L,n · [Wj,j ]
−1 (11.27)

As before, A3
L,n can be applied onto the same ensembles of unknown radiances as experiment #1, R̃n,u, and

geophysical parameters computed for both method. As shown below, these are identical to the results from
the solution without weighting (experiment #1).

G3
L,u = GL +A3

L,n ·
(
Wj,j · R̃n,u

)
(11.28)

= GL +A1
L,n ·W−1

j,j ·Wj,j · R̃n,u

= GL +A1
L,n · R̃n,u (11.29)

G3
L,u = G1

L,u (11.30)

Therefore, the relative weighting of the channels has absolutely no effect in a statistical regression
approach.

11.1.4 Experiment #4: Coarse Layers

Assume we can take some average of the fine vertical layers for T (p) and q(p) to create a set of coarse vertical
layers. The motivation for this is that it is a dimension reducer and it also matches the expected vertical
resolution of the instrument (see Backus & Gilbert, 1970, Conrath 1972). Assume that the coarse layers,
Yj,k, are related to the fine layers, GL,k, by a matrix operator, Cj,L,

Yj,k ≡ Cj,L ·GL,k (11.31)

and the mean of the known ensemble (Eqn. 11.5) is then given by

YL ≡ Cj,L ·GL = Yj,k (11.32)

The coarse layer geophysical parameters can also be estimated by a regression matrix, A4
j,n, and are

related to the radiances by

Y 4
j,k = YL +A4

j,n · R̃n,k (11.33)

The matrix, A4
j,n, is then given by

A4
j,n =

(
Y 4

j,k − YL

) · R̃′
k,n ·

[
R̃n,k · R̃′

k,n

]−1

(11.34)

with the regression retrieval on unknown cases given by

Y 4
j,u = YL +A4

j,n · R̃n,u (11.35)

We can also convert the results from experiment #1 (Eqn. 11.15) to coarse layers

Y 1
j,u ≡ Cj,L ·G1

L,u (11.36)
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When we numerically compute Y 4
j,u (Eqn. 11.35) from the same unknown ensembles (GL,u) as experiment

#1 we find that Y 4
j,u = Y 1

j,u. This can be understood as follows. First the coarse layer regression matrix is
related to a linear combination of the fine layer regression matrix

A4
j,k =

(
Yl,k − YL

) · R̃′
k,n ·

[
R̃n,k · R̃′

k,n

]−1

(11.37)

= Cj,L ·
(
GL,k −GL

) · R̃′
k,n ·

[
R̃n,k · R̃′

k,n

]−1

(11.38)

A4
j,k = Cj,L ·A1

j,k (11.39)

and when applied to the unknown ensemble we see that it should be identical

Y 4
j,u = YL +A4

j,n · R̃n,u (11.40)

= Cj,L ·GL + Cj,L ·A1
L,n · R̃n,u (11.41)

= Cj,L ·G1
i,u (11.42)

Y 4
j,u = Y 1

j,u (11.43)

In Fig. 11.10 we compute the errors in Y 1
j,u and in Fig. 11.11 we show the errors in Y 4

j,u. These two
plots are identical which is a numerical proof of Eqn. 11.40.

Figure 11.10: regression results for 66 level case, averaged on 24 levels. This figure is simple an average of
Fig. 11.4

Therefore, the use of coarse layers has no effect on the regression except in terms of execution time and
memory allocation. In general, regression on any linear combination of the geophysical parameters
will be identical to the linear combination of a regression on all the geophysical parameters.
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Figure 11.11: Regression performed on 24 coarse layers is identical to a the average of a regression performed
on 66 layers (shown in Fig. 11.10)
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11.2 Direct Computation of Regression Coefficients

definition of symbols used in retrieval algorithm
symbol description
j case number (profile ID)
L geophysical state index
n channel index number
v view angle index
θv,j view angle at index v, case j
XL,j geophysical state (T (p), q(p), O3(p), ε(n), . . .)
R̂v

n,j average INFRARED cloudy radiances in AMSU FOR
Rv

n,j INFRARED cloud cleared radiances
∆Θ̃v

n,j brightness temperature difference from mean
Av

L,n regression coefficients at angle v

The AIRS retrieval uses the NOAA regression product as a first guess. The NOAA approach is based
on the use of eigenvectors of covariance matrices also called principal component analysis (PCA) to reduce
the data in fewer components that sill retain most of the variability of the information of the original data.
The theoretical aspects for the PCA method for atmospheric sounding is described in Wark and Fleming
(1966), Smith and Woolf (1976). The eigenvectors of a covariance matrix provide the most economical
representation of a large sample of observations, where each observation consists of numbers which are not
statistically independent of each other (Smith et al., 1976). In the current NOAA implementation, 85 principal
components are used to solve for atmospheric temperature, moisture, ozone, surface temperature and surface
emissivity.

In a statistical retrieval a “training” matrix, Av
L,n, is computed via least squares fitting to an ensemble

of J “known” geophysical cases, XL,j , and associated radiances, Rv
n,j ≡ Rv

n(XL,j), measured at view angle v.
The regression matrix, Av

L,n, can then be used to solve for the geophysical state from measurements, Rv
n,j .

We begin by computing averages of the training “predictands” as follows:

< Rv
n,j >j ≡ 1

J

J∑
j=1

Rv
n,j (11.44)

and the average “predictors” as

< XL,j >j ≡ 1
J

J∑
j=1

XL,j (11.45)

And we define a dimensionless predictor which has the property of having similar numerical values across
a large spectral range

∆Θ̃v
n,j ≡ Rv

n,j− < Rv
n,j >j

∂Bν0(n)

∂T

∣∣∣∣
B−1

ν [Rv
n,j]

(11.46)

The statistical retrieval (a.k.a., regression) for the simultaneous retrieval of all geophysical parameters is
written in matrix notation as

∆XL,j ≡ XL,j− < XL,j >j = Av
L,n ·∆Θ̃v

n,j (11.47)
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where an example of the matrix components are




∆Ts

∆ε(ν1)
∆ε(ν2)
∆T (1)
. . .

∆T (L)

∆q(1)
. . .

∆q(L)




I

=



A11 . . . A1N

A21 . . . A2N

. . . . . . . . .
AI1 . . . AIN


 ·



∆Θ̃v
1

∆Θ̃v
2

. . .
∆Θ̃v

N


 (11.48)

Each row of the regression matrix could be solved for separately. For example, surface temperature could
be written as

( ∆Ts )I = (A11 . . . A1N ) ·




∆Θ̃v
1

∆Θ̃v
2

. . .
∆Θ̃v

N


 (11.49)

Also, the regression should be done in the most linear space. For example, the natural logarithm of
relative humidity might be a better geophysical parameter than mixing ratio, specific humidity, or relative
humidity. For each geophysical regression one should find the most linear relationship between ∆X and ∆Θ.

The advantage of regression is that it is extremely fast, given that all the physics computations are done
off-line. Also, the regression can incorporate statistical knowledge of the Earth’s atmosphere that allows
retrieval of quantities that are not measurable with a given instrument. For example, lets say that the AIRS
instrument does not have any sensitivity above 0.1 mb. If the temperatures above 0.1 mb are correlated
statistically with temperatures below 0.1 mb then a statistical retrieval will retrieve reasonable values - even
if the radiances are not sensitive to that region because the regression uses radiances sensitive to lower regions
and the statistical relationship. The disadvantage is that the retrieval process has been linearized.

The least squares solution of Eqn. 11.47 is given by

∆XL,j ·∆Θ̃j′
j,n = Av

L,n ·∆Θ̃v
n,j ·∆Θ̃j′

j,n (11.50)

Av
L,n = ∆XL,j ·∆Θ̃j′

j,n ·
[
∆Θ̃v

n,j ·∆Θ̃j′
j,n

]−1

(11.51)

In practice, the regression coefficients can be determined via two methods:

1. Synthesized regression coefficients can be computed radiances with modeled instrumental noise charac-
teristics.

2. Operationally, regression coefficients can be determined from observed radiances and ground truth,
such as radiosondes.
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11.3 Pre-launch Eigenvector regression - (simulation version)

definition of additional symbols
in eigenvector algorithm

symbol description
k Eigenvalue index (k=1 is largest eigenvalue)
λk Eigenvalue
Ek,n Eigenvector
P v

k,j Principal Component Score at view angle v
AC0

k Limb Adjustment Zero point
ACv

k,k′ Limb Adjustment Coefficients
P 0

k,j Principal Component Score, corrected to nadir
AL,k regression coefficients at nadir

We can compute eigenvalues of an ensemble of measured (or simulated) radiances at a view angle v as
follows:

λk ≡ Ek,n ·∆Θ̃v
n,j ·∆Θ̃v

j,n(θ) · E′
n,k (11.52)

For instruments with large numbers of channels the information content of the radiances can be represented
by a smaller number of eigenvectors in order to reduce the computational burden. Only the most significant
eigenvalues are kept. For example, the AIRS statistical regression uses 100 eigenvectors computed from 1960
channel radiances. The 100 eigenvectors are then used to compute principal components.

P v
k,j = Ek,n ·∆Θ̃v

n,j (11.53)

The radiances, and therefore, the principal components, contain all the vertical information in the profiles,
therefore, these principal components can be “corrected” for off-nadir viewing. The 100 principal components
are corrected to a nadir viewing angle via regression

P 0
k,j = AC0

j

+ ACv
k,k′ · P v

k′,j (11.54)

where,

AC0
k ≡< P 0

k,j >j (11.55)

The regression equation is of the form

∆XL,j = AL,k · P 0
k,j (11.56)

Finally, the regression matrix is determined from the 100 nadir principal components

AL,k = ∆XL,j · P 0′
j,k ·

[
P 0

k,j · P 0′
j′,k

]−1

(11.57)

All the matrices, Ek,n, AC
0
k , AC

v
k,k′ , and AL,k, are determined from a training dataset and then applied

to independent measurements. It would be feasible to determine the eigenvectors and nadir correction
coefficients from a simulated dataset and the regression coefficients from real data.
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The individual steps in the eigenvector method can be combined to produce a regression matrix of the
form of Eqn. 11.47.

Av
L,n = AL,k ·ANv

k,k′ · Ek′,n (11.58)

where this Av
L,n has been computed in a manner where we remove sensitivity to noise (via the eigenvector

processing). While use of this matrix is mathematically equivalent to the the use of the individual eigenvector,
angle correction, and regression matrices it is computationally burdensome in practice due to the inner loop
multiplications of n = 1960 channels for a large number of L versus a smaller number of j′ = 100.

The combined method also requires more memory to store the coefficients than the eigenvector method.
For L=400, j=100, n=1960 and 15 θ”s the eigenvector method takes 196,000 words for Ek,n, 150,000 words
for ANv

k,k, and 40,000 words for AL,k or 386,000 words. For Av
L,n there are 15 · 400 · 1960 or 11,760,000

required.

11.4 Error estimates for eigenvector regression

The diagonal of the cloud cleared radiance error estimate, δRs
n,CCR ·

(
δRs

n′,OBS

)T , can be used to estimate
the error introduced by regression. We propagate this error through all the eigenvector equations in the RSS
sense. For a given case and cloud clearing step s we use the diagonal of the cloud cleared radiance error
covariance as an estimate of the radiance error in the regression.

δRs
n =

√
δRs

n,CCR ·Rs′
n,CCR (11.59)

If computationally feasible, we could compute the RSS of the radiance errors using Av
L,n

δXs =

√∑
n

(
Av

L,n · δR2
n

)2

(11.60)

However, given our concern for computational efficiency we can computed the errors at each step of the
computation. First, the error in the principal components, at zenith angle θ, is given by the RSS of the linear
combination of radiances used to compute the principal components

δP v
k,j =

√∑
n

(
Ek,n · δRs

n,j

)2 (11.61)

The error in the nadir principal component

δP 0,s
k,j =

√√√√ ′∑
k

(
ANv

k,k′ · δP v
k′,j

)2

(11.62)

δXs
L,j =

√∑
k

(
AL,k′ · δP 0,s

k′,j

)2

+ δXN
L (11.63)

where δXN
L is estimate of the null error for regression, which is a measure of the non-uniqueness of the

solution.
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11.5 AIRS Post-launch Eigenvector Regression

definition of additional symbols
in post-launch eigenvector algorithm

symbol description
n channel number, AIRS original channel index, n = 1, 2378
Me number of channels used in eigenvector computation
Mε number of channels used in emissivity computation
m channel sub-set index number
n(m) sub-set of AIRS channels used in regression
NE∆Nn(m) Noise Equivalent Difference Radiance for AIRS channel n
Rn(m),j Radiance (observations) for channel n, case j
∆Θ̃m,j Argument of Radiance
i geophysical parameter index
L vertical grid index, L = 1, 100
Xi,j geophysical parameter, e.g. T (L), q(L), etc for case j

and geophysical index i
j index for a scene of radiances and/or geophysical parameters
α AIRS view (scan) angle, −48.95◦ ≤ α ≤ 48.95◦

v index for the view angle regime (see Table 11.1)
Je ensemble of cases (j = 1, Je) used for training of EOF’s
Jr(v, L) ensemble of cases (j = 1, Jr(v, L)) used for training of profile regressions

for view angle regime = v and atmospheric layer L
Jε(l) ensemble of cases (j = 1, Jε) used for training of emissivity regression

for surface type = l
k Eigenvalue index (k=1 is largest (most significant) eigenvalue)
λk Eigenvalue
Ek,m Eigenvector for channel n(m)
v view angle index
P v(k, j) Predictor array at view angle v for a single scene j,

contains k elements of PCS’s and 2 additional predictors
Av

L,k regression coefficients at view angle v

The NOAA/NESDIS eigenvector regression product derives temperature, moisture, ozone profiles, skin
temperature, and emissivity from the AIRS cloud cleared radiances and is used as a first guess for the physical
retrieval. In general, a regression is derived from a ”training dataset” that are geophysical states compiled
from radiosonde profiles, satellite retrieved profiles, a numerical weather prediction model, or climatologies,
or some combination of the above. Satellite radiances corresponding to the geophysical training dataset are
used to derived a linear statistical relationship between radiances and the geophysical state. A regression
provides fast and accurate initial guesses for temperature, moisture, and ozone profiles as well as surface
parameters (Goldberg et al., 2003).

Eigenvector regression for atmospheric sounding was first demonstrated by Smith and Woolf (1976).
Eigenvectors are also commonly referred to as empirical orthogonal functions (EOF’s) in the literature.
Because of the large number of channels measured by AIRS, the eigenvector form of regression is crucial
for exploiting the information content of all channels in a computationally efficient way. By representing
radiometric information in terms of a reduced set of eigenvectors (much fewer in number than the total
number of instrument channels, described in sub-section 11.5.1), the dimension of the regression problem is
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reduced by approximately one order of magnitude. Another advantage of using a reduced set of eigenvectors
is that the influence of random noise is reduced by elimination of higher order eigenfunctions which are
dominated by noise structure. It should be noted that if all eigenvectors are retained as basis functions, the
eigenvector regression reduces to the ordinary least squares regression solution in which satellite measurements
are used directly as predictors.

Eigenvectors of the radiance covariance matrix are computed from AIRS cloudy radiance and are used as
basis functions to represent the AIRS radiometric information. The generation of the covariance matrix and
derivation of the eigenvector coefficients is discussed in sub-section 11.5.1. The use of principal component
analysis reduces the data into fewer components that still retain the information content of the original data.
These components are commonly referred to by statisticians as principal component scores (PCS’s). AIRS
cloud cleared radiances are converted to PCS’s and then used to solve for atmospheric temperature, moisture,
ozone, surface temperature. The training of these geophysical regressions is discussed in sub-section 11.5.3.

The application of these coefficients to compute PCS’s from AIRS cloud cleared radiances is discussed
in sub-section 11.5.5 and the use of those PCS’s to compute temperature, T (p), moisture mixing ratio, rw(p),
and ozone mixing ratio, ro(p), is discussed in sub-section 11.5.7, 11.5.8, 11.5.9, respectively.

A synthetic regression (simulated AIRS radiances) is used to derive the surface emissivity coefficients
and is discussed in sub-section 11.5.10.

11.5.1 Generating the Radiance Covariance Matrix and Eigenvectors

The covariance matrix of radiance is derived from an ensemble of AIRS spectra. Radiances span two orders
of magnitude between the long-wave and short-wave channels, therefore, we normalized the AIRS spectra by
the AIRS instrument noise, NEDNn(m), to minimize numerical effects associated with round-off error.

For version 4.0 a single day of AIRS radiances was determined to be adequate to describe the entire
variance of radiances. A global ensemble of AIRS cloudy radiances from Jan. 15, 2003 was used as the
”training” data for eigenvector coefficients. Since there is a large redundancy in the AIRS granules, a subset
was constructed from the AIRS FOV’s. In each of granule every 9th FOV (1st,10th,19th,. . .,82nd) from every
45th scan line (45th,90th,135th) was used. This resulted in Je = 240 · 10 · 3 = 7200 spectra to be used for
training.

In the version 4.0 regression a total of Me = 1680 channels were considered to be reliable for all post
launch epochs based on the AIRS science team channel property files (v6.6.x) and a summary list of channel
behavior over two years, compiled by Margaret Weiler. In addition, channels that are affected by non
thermodynamic equilibrium (P-branch side of the 4.3 µm CO2 band) were also removed. The AIRS channel
numbers used are listed in Table 11.7 for reference.

Detector arrays can experience spurious events that can alter the noise characteristics. The AIRS L1b
calibration can mark certain channels as bad on any arbitrary scan line. For training of eigenvectors and
regression coefficients any spectra containing bad channels are removed from the training ensemble.

The deviations of the normalized radiances from their sample mean is denoted as ∆Θ̃m,j , a matrix of
dimensions [m = 1,Me j = 1, Je], where Me = 1680 is the total number of instrument channels and Je = 7200
is the sample size of the training data set for eigenvector coefficients. The deviation matrix is given by

∆Θ̃m,j ≡ Rn(m),j

NE∆Nn(m)
− < Rn(m),j >Je

NE∆Nn(m)
≡ Rn(m),j

NE∆Nn(m)
− < Θ̃m,j >Je

(11.64)

The covariance matrix of the normalized radiances, ∆Θ̃cov, is a square matrix of order Me = 1680 and
is given by

∆Θ̃cov ≡ 1
Je

Je∑
j=1

∆Θ̃m,j ·∆Θ̃T
j,m (11.65)

The diagonal elements of ∆Θ̃cov represent the variance of the respective channel noise scaled radiance while
the off diagonal elements represent the covariance between pairs of channels. We normalize ∆Θcov by the
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number of observations Je so that the magnitude of the eigenvalues does not change with the size of the
training ensemble.

The relationship between the radiance covariance and eigenvectors and eigenvalues is given by:

∆Θ̃cov ≡ ET
m,k · Λk,k′ · Ek′,m (11.66)

where Λk,k′ is a diagonal matrix with elements equal to λk. We use the routines TRED2, TQLI in Press et.
al 1986, pgs. 350-363 to derive Ek′,m and λk and the routine EIGSRT to order the eigenvalues in terms of the
amount of the total data variance. The largest λk explains the most variance and each successive eigenvector
explains progressively less of the total data variance. The square root of eigenvalues is equivalent to the
standard deviation of the principal component scores (PCS’s, see Eqn. 11.69) of the training ensemble. Since
we are using normalized radiances, the square root of the eigenvalues can be interpreted as signal-to-noise;
however, this is only an approximation since the AIRS short-wave band noise is a function of the scene
radiance.

In Fig. 11.12 the eigenvalues are shown for the training day used in the v4.0 PGE. Also shown are
eigenfunctions of a 3 day (9/6/02, 9/29/02, and 1/25/03) ensemble of synthetic AIRS radiances in which
we used models for temperature, moisture, ozone, and carbon trace gases, and instrument noise models to
compute radiances. The difference between these two curves represents the information not contained within
the synthetic radiances, most likely due to clouds. The fact that the eigenvalues beyond k = 1000 decrease
and become smaller than the eigenvalues from the simulated clear radiances is an indication that we may
need more than Je = 7200 cases for the training of the EOF’s or that we need more than one training day.
In version 5.0 this will be addressed. In Fig. 11.13 the first 100 eigenvalues are shown for the v4.0 PGE
training day. Again, eigenvalues from synthetic clear radiances is shown for comparison.

Figure 11.12: The values of λk for AIRS cloudy radiances (solid line) and simulated AIRS clear radiances
(dashed line)

In this formalism, the significant eigenvalues are those that are above the noise “floor”. Random noise
should generate constant eigenvalues, thus we examine Fig. 11.12 to find the “knee” in the curve. To the
right of this “knee” the information content is dominated by noise. The optimal number (Kmax) has been
determined to be 85 for capturing the information content of the measurements from AIRS. Using a greater
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Figure 11.13: The first 100 values of λk for AIRS cloudy radiances (solid line) and simulated AIRS clear
radiances (dashed line)

number of eigenvectors tends to make the regression result more sensitive to noise. Once Kmax is determined,
those eigenfunctions are used as basis functions to represent the original radiance information in terms of
PCS’s. The EOF training procedure produces the following coefficients:

1. The average radiance of the Je scenes used in the training ensemble, < Rn(m),j >Je

2. The eigenvalues, λk

3. The most significant eigenfunctions, Ek,m.

4. and the noise used in the computation NE∆Nn(m)

The file format for these coefficients is described in Sec. 11.5.2.

11.5.2 NOAA Eigenvector File Format

The eigenvector file is written out with the following components using FORTRAN formatted I/O.

• A header block with

– the number of channels in the subset, Me = 1680, format(i13)

– the number of eigenvectors, Kstore = 200, format(i13)

– A flag if radiances are used (set to T), format(2x,L1)

– A flag is the mean is subtracted (set to T), format(2x,L1)
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• The average of Θ̃ for the Me channels, format(1x,5g15.7)

< Θ̃ >m ≡ < Rn(m),j >Je

NE∆Nn(m)
(11.67)

• Each eigenvector, Ek,m, is written out as a single record of Me elements for each value of k = 1,Kstore,
format(1x,5g15.7)

• The value of λ(k) for k = 1,Me, format(1x,5g15.7)

• The value of NE∆Nn(m) for m = 1,Me, format(1x,5g15.7)

• The value of channel wavenumber, νn(m), for m = 1,Me. format(1x,5g15.7)

• The value of n(m) for m = 1,Me. format(1x,6i12)

11.5.3 Generating regression coefficients from Principal Component Scores

AIRS viewing geometry changes along the scan-line from −48.95◦ ≤ α ≤ 48.95◦. The regression could have
been trained at each of the 30 view angles, or with the assumption of symmetry about nadir we could have
used 15 view angles; however, this creates the need for a large volume of coefficients and memory requirements.
After some analysis it was decided to train the regression in four view angle regimes, defined in Table 11.1,
and use two additional predictors; one for which side of nadir the observation is made, and the other is the
view angle of the observation. In this way, the regression is allowed to fit the radiances as a function of
angular variability over a narrow range of angles and can adjust the fit for scan asymmetry.

Table 11.1: View-angle regimes in the NOAA regression
v α1(v) α2(v) Jr(v)
1 53.130 42.269 ≈ 3,000
2 42.269 31.788 ≈ 6,000
3 31.788 19.948 ≈ 7,000
4 19.948 0.000 ≈ 10,000

Principal component regression uses PCS’s, instead of radiances, for predictors in a least square regres-
sion. In our algorithm, we normalize PCS’s by the square root of the eigenvalue to minimize numerical
roundoff error in the computation. Again we employ Eqn. 11.64, reproduced below, to convert our spectrum
of Me channels, for an ensemble of scenes, into PCS’s to be used for training the regression coefficients.
The Jr scenes used for training the regression coefficients are not the same scenes as used in training the
eigenvectors, that is Jr �= Je. In the AIRS science team algorithm we will apply the regression coefficients
to cloud cleared radiances, therefore, cloud cleared radiances are used to compute the regression coefficients.
Each spectrum Rn(m),j , is first converted to a signal-to-noise departure from the average of the eigenvector
training ensemble, < Rn(m),j >Je

∆Θ̃m,j ≡ Rn(m),j

NE∆Nn(m)
− < Rn(m),j >Je

NE∆Nn(m)
≡ Rn(m),j

NE∆Nn(m)
− < Θ̃m,j >Je

(11.68)

and then converted into PCS’s

Pk,j =
1√
λk

· Ek,m ·∆Θ̃m,j (11.69)

Only k = 1,Kmax principal components are kept, where Kmax = 85 is the number of significant eigenvalues
determined in sub-section 11.5.1.
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A predictor array is constructed using the PCS’s for those cases with α1(v) < |α| ≤ α2(v), where α is
the instrument view angle. The predictor argument for the sub-set of cases is assembled with the first Kmax

elements being set equal to Pk,j . The element i = Kmax + 1 is set equal to one if α < 0 or zero if α ≥ 0.
The element i = Kmax + 2 is set equal to 1− cos

(
π·α
180

)
. Therefore, the complete predictor vector used in this

regression can be given by

Pk,j =




P1,j

P2,j

. . .
PKmax,j

1−sign(αj)
2

1− cos(π·αj

180 )




i = 1,Kmax + 2 (11.70)

For AIRS, we use Kmax = 85 principal component scores for predictors and solve for atmospheric
temperature, moisture, ozone profiles, and surface temperature. Initially, only one day of data was thought to
be sufficient to generate regression coefficients; however, we found that the analysis field may have large errors
in certain regions. Currently, three days from AIRS observations for the generating regression coefficients are
September 6, 2002, January 25,2003, June 8, 2003, collocated with estimates of the true atmospheric profiles
(i.e., ECMWF). Data are selected by screening out cases where the AIRS cloud cleared radiances may be
affected by clouds and where there may be problems with the geophysical states used as “truth” using the
following tests

1. The brightness temperature of the AIRS observation in channel # 2112, B−1
ν

(
Rn(m)

)
must be within

± 5 K of the predicted brightness temperature, Θ(2212), computed from AMSU radiances, ΘA(n). We
use AMSU channels n = 4, 5, and 6 to compute the predicted AIRS radiance, Θ(2112), as follows

Θ(2112) = a1 + a2 ·ΘA(4) + a3 ·ΘA(5) + a4 ·ΘA(6) + a5 · cos(θ) + a6 · (1− cos(α)) (11.71)

where the coefficients of the AMSU screening test used to predict AIRS channel # 2112 (f = 2390.53
cm−1) are

coef value multiplied by
a1 18.653 constant
a2 -0.169 AMSU chl.4
a3 +1.975 AMSU chl.5
a4 -0.865 AMSU chl.6
a5 +4.529 cosine of satellite zenith angle
a6 -0.608 1-cosine of view angle

2. The reconstruction score, given in Eqn. 11.89, is less than 1.25.

3. Compare the brightness temperatures, computed from the training ensemble geophysical states with
the AIRS cloud cleared radiances for a set of channels given below. The difference between observed
and computed brightness temperature for all 12 channels must be within 2 K. The 12 channels are
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NOAA AIRS reason
index channel freq. for test

84 186 702.18 200 mb T
87 198 706.14 300 mb T
92 215 711.00 400 mb T
94 221 712.74 500 mb T
97 232 715.94 600 mb T

103 262 724.82 700 mb T
113 333 746.01 800 mb T, cloud contamination
117 375 759.57 900 mb T, cloud contamination
129 914 965.43 surface, cloud contamination
190 1669 1468.83 450 mb water
201 1763 1542.45 200 mb water
203 1771 1547.88 400 mb water

There are approximately 2,700,000 total spectral samples for the three training days and about 26,000
passed the three threshold tests above. The approximate number in each view angle regime, Jr(v) is given
in Table 11.1.

Another issue for the regression is that topography limits the available training ensemble for some altitude
layers. For each case, j, there is a maximum number of vertical levels defined by the surface pressure (that is,
some of the 100th layer grid is below the surface). If this lower level is given as Lbot then the number of cases
in the training ensemble, Jr, is a function of how many cases have surface pressure above that level, that
is, each profile is only valid over the range of L = 1, Lbot. Therefore, the number of cases in the regression
training ensemble is a function of both view angle regime, v, and the vertical atmospheric layer, L. Regression
is a linear operator and, as such, each layer and view angle regime is a separate regression.

We can write the total number of cases used for training the regression in each layer of the atmosphere
and each view-angle regime as Jr(v, L). These are the cases that satisfy the view-angle criteria in Table 11.1
and have valid geophysical parameters in the layer under consideration in Xi. We can compute the average
predictor argument for this subset ensemble and subtract that from the training ensemble

∆Pk,j = Pk,j− < Pk,j >Jr(v,L) (11.72)

For temperature we train the regression on the layer mean temperature for atmospheric layer L and also for
surface skin temperature. For moisture the regression is trained on both the loge(rw(L)) and rw(L), where
rw(L) is the mass mixing ratio of water in grams/kilo-gram (g/kg) within layer L. For ozone the regression
is only trained on loge(ro(L)) where ro(L) is the mass mixing ratio within layer L. The generalized equation
we will solve, for Xi = T (L),Xi = Tsurf ,Xi = rw(L),Xi = loge(rw(L)), andXi = loge(O3(L)), is given by

Xi,j =< Xi,j >Jr(v,L) +Av
i,k ·∆Pk,j (11.73)

where we can write,

∆Xi,j = Xi,j− < Xi,j >J(v,L) (11.74)

See Table 11.2 for a translation from our parameter space, Xi, to geophysical layer parameter XL. We can
solve Eqn. 11.73 for the regression coefficients, Av

i,k, as follows:

Av
i,k = ∆Xi,j ·∆PT

j,k ·
[
∆Pk,j ·∆PT

j,k

]−1
(11.75)

No additional regularization is needed in Eqn. 11.75 since the principal components have been regularized by
selecting only Kmax = 85 of the principal components. Once Av

i,k is determined we can combine the average
of the geophysical parameter given in Eqn. 11.74, Xj ≡< Xi,j >Jr(v,L), and the average of the predictor
given in Eqn. 11.72, P k ≡< Pk,j >Jr(v,L) into a single value, called Ai = Xi +Ai,k ·P k, so that our regression
equation can utilize the un-normalized predictors. We can rewrite Eqn. 11.74 as
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Xi,j = Av
i +Av

i,k · Pk,j (11.76)

where Av
i is defined as

Av
i ≡< Xi,j >Jr(v,L) − Av

i,k· < Pk,j >Jr(v,L) (11.77)

Once the regression matrix is known it is useful to compute the mean and standard deviation of the
error between the regression, applied to the training ensemble radiances, and the geophysical value in the
training ensemble. This is the fitting error. Each case has an error, δX, given by

δXi,j = Xi,j −
[
Av

i +Av
i,k · Pk,j

]
(11.78)

For each geophysical parameter we can compute a mean and standard deviation of the regression error
(difference of regression from the training values). The mean error is given by

δXi ≡ 1
Jr(v, L)

∑
j

δXi,j (11.79)

and should be zero for the training ensemble. The standard deviation of the error is given by

σ(δXi) ≡

 1
Jr(v, L)

∑
j

(
δXi,j − δXi

)2
1
2

(11.80)

The standard deviation can be compared to the standard deviation of the training ensemble’s departure from
its mean, given in Eqn. 11.74.

σ(∆Xi) ≡

 1
Jr(v, L)

∑
j

(∆Xi,j)
2




1
2

(11.81)

The mean and standard deviation of the regression error and the standard deviation of training ensemble
are all written into the regression coefficient file (see Section11.5.4).
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Table 11.2: Geophysical parameters, Xi, solved in NOAA real-time regression (NOTE: rw = mass mixing ratio
of water, ro = mass mixing ratio of ozone). The index i is used in the data file and the index L = 1+(i−1)/4
is used in a storage vector in the retrieval code.

i L eigenvector regression parameter
1 1 T (1)
2 1 rw(1)
3 1 loge(rw(1))
4 1 loge(ro(1))
5 2 T (2)
6 2 rw(2)
7 2 loge(rw(2))
8 2 loge(ro(2))
. . . . . .
385 97 T (97)
386 97 rw(97)
387 97 loge(rw(97))
388 97 loge(ro(97))
393 99 T (Ps)
394 99 rw(Ps)
395 99 loge(rw(Ps))
396 99 loge(ro(Ps))
397 100 Ts

i n synthetic regression parameter
401 1 ε(1)
402 2 ε(2)
. . . . . . . . .
439 39 ε(39)
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Figure 11.14: Regression statistics for the v4.0 temperature regression. In each panel there are 4 lines
corresponding to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 (blue). From left to right the panels
are Jr(v, L), < Xi,j >Jr(v,L), σ(∆Xi) using Eqn. 11.81, and σ(δXi) using Eqn. 11.80
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Figure 11.15: Regression statistics for the v4.0 water regression. In each panel there are 4 lines corresponding
to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 (blue). From left to right the panels are X ≡<
Xi,j >Jr(v,L), σ(∆Xi)/X using Eqn. 11.81, and σ(δXi)/X using Eqn. 11.80. Solid lines are the linear water
regression and dashed lines are the logarithmic water regression, in which exponentials of X are computed
to convert log(rw(L) into rw(L).
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Figure 11.16: Regression statistics for the v4.0 ozone regression. In each panel there are 4 lines corresponding
to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 (blue). From left to right the panels are X ≡<
Xi,j >Jr(v,L), σ(∆Xi)/X using Eqn. 11.81, and σ(δXi)/X using Eqn. 11.80. Exponentials ofX are computed
to convert log(ro(L) into ro(L).
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11.5.4 NOAA Regression File Format

In the NOAA regression file each set of geophysical parameters is written for a view angle block. The index
number system for the geophysical parameters is given in Table 11.2 or 11.2. In the profile regression, the
393 parameters (1-388,393-397) are written out in 4 sequential blocks in the regression file. In the surface
regression the 39 emissivity regressions are written out for the 4 land types. The overall structure of the data
file looks like

• Header Block for Profile Regression

• 393 regression sets for view angle regime number 1

• 393 regression sets for view angle regime number 2

• 393 regression sets for view angle regime number 3

• 393 regression sets for view angle regime number 4

• Header Block for Synthetic Emissivity Regression

• 39 regression sets for land surface type 1 (non-frozen land)

• 39 regression sets for land surface type 2 (non-frozen ocean)

• 39 regression sets for land surface type 3 (ice)

• 39 regression sets for land surface type 4 (snow)

Each regression set includes the following:

• The header line, format(2i4,a10,i6,4f10.5), for the profile and emissivity regression set contains

– The parameter number (see Table 11.2)

– The number of predictors, I = Kmax + 2

– The pressure at level L or frequency at emissivity n.

– The number of cases in training ensemble, Jr(v, L) or Jε(l).

– The mean of the training ensemble, < Xj >Jr(v,L) or < Xj >Jε(l)

– The standard deviation of the training ensemble, σ(∆X(L))

– the standard deviation of the error of the regression applied to the training ensemble, σ(δX(L))

• A block of I + 1 = Kmax + 3 coefficients, starting with Av
i and then the I values of Ai(L) is written

with format(8g15.7)

11.5.5 Computing Principle Component Scores from AIRS Radiances

We begin by computing the radiance argument from AIRS cloud cleared or clear radiances for our single
spectrum for scene j using Eqn. 11.64 for the Me channels used in the eigenvector array.

∆Θ̃m,j ≡ Rn(m),j

NE∆Nn(m)
− < Θ̃ >m (11.82)

The channel list, n(m), noise values, NE∆Nn(m), and average radiance, < Θ̃ >m, are all read in from the
eigenvector coefficient file.
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We then convert the radiance argument into principal component scores; however, some of the AIRS
HgTeCd detectors may suffer from a phenomena described as “popping” in which the detector has a non-
Gaussian noise event that can be many NE∆N units. This “popping” occurs for any arbitrary channel about
1:10,000,000 measurements. When training eigenvectors or regression coefficients any spectra containing bad
channels are simply removed from the training ensemble. When applying the regression operationally the
use of a bad channel can be quite detrimental, therefore, we need a dynamic ability to remove BAD channels
from our algorithm. In the physical algorithm, the channel is simply removed from consideration; however,
in regression algorithms a bad channel cannot be removed.

Bad channels can be found by monitoring the reconstruction scores (see Eqn. 11.89) and the difference
between the reconstructed and the observed radiances. If AIRS level1B radiance quality flags indicated the
radiance is sub-optimal (i.e., the CalFlag bit 4,5,6 is set), we compute the PCS’s by using the mean deviations
of the neighboring good channels of the bad channels (using the average of the 10 neighboring channels).
Then we use this set of PCS’s to reconstruct those channels that are marked bad. After that we recompute
the PCS, substituting the reconstructed radiances for the bad channel(s) and use that PCS for regression
retrieval.

For example, if channel m0 is BAD in radiance set Rn(m0),j for case j it can be crudely estimated by the
average value of the neighboring radiances.

∆Θ̃m0,j =
1
10

∑
i=1,5

(
∆Θ̃m0−i,j + ∆Θ̃m0+i,j

)
(11.83)

where m0− i is the ith closest valid radiance, within our channel list, on the low wavenumber side of m0 and
m0 + i is the the ith closest valid radiance on the high wavenumber side. In the PGE code we exclude any of
the i channels that are marked bad, so there can be less than 10 channels in Eqn. 11.83; however, this event
is incredibly rare. We begin by using this estimate in place of the bad radiance(s) to compute an initial guess
for the principal component score, P 0

k,j

P 0
k,j =

1√
λ(k)

· Ek,m ·∆Θ̃m,j (11.84)

Once P 0
k,j is computed, the BAD radiance for channel m0 can be estimated from all the remaining good

radiances and our estimate of the bad radiance. This approach can only work if there is redundant information
contained within the spectrum. For AIRS the 1680 channels can be represented by approximately 85 principal
components, therefore, the is approximately a 20:1 redundancy in the AIRS spectrum. The radiance argument
for the bad channels is replaced by one computed from our entire spectrum as follows

∆Θ̃m0,j =
√
λ(k) · ET

m0,k · P 0
k,j , where, m0 is the index of the BAD channel (11.85)

Then the PCS’s can be recomputed from the improved estimate of the bad radiance along with the good
radiances.

P 1
k,j =

1√
λ(k)

· Ek,m ·∆Θ̃m,j (11.86)

This process could be iterated until P i
k,j converges; however, the first iteration appears to be adequate

in operation. Basically, we use principal components to generate reconstructed radiances and to compute the
root-mean-square (RMS) between the reconstructed radiances and the observed radiances. It appears that
the RMS for most cases is comparable with the instrument noise level, therefore AIRS observations can be
reconstructed very accurately by using about 85 PCS’s.

We use the first iteration of the PCS’s, P 1
k,j , in all our regression applications in the next three sections.

11.5.6 Computation of Radiance Reconstruction Scores

Reconstructed radiances are computed from the principal component scores (PCS’s) and inverting Eqn. 11.82
to obtain a radiance.
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R̂n(m),j = NE∆Nn(m) ·
(
< Θ̃ >m +

√
λ(k) · ET

m,k · P 1
k,j

)
(11.87)

The reconstructed radiances can be thought of as noise free radiances, therefore, we can estimate the
noise in the spectrum by taking the difference between the radiance argument and the reconstructed radiance
argument as follows

CSm,j =
Rn(m),j − R̂n(m),j

NE∆Nn(m)
≡ ∆Θ̃m,j −

√
λ(k) · ET

m,k · P 1
k,j (11.88)

If we take the root-sum-square of RS then we have a single parameter that describes the quality of the
spectrum.

RSj ≡ 1
M

M∑
m=1

CSm,j (11.89)

A value reconstruction score equal to one is an indication that the radiance noise is statistically equal
to the our noise estimate, NE∆Nn(m). The reasons that a reconstruction score is different than one could be
due to:

• The spectrum has bad channels that were not identified.

• Instrument problems, such as incorrect detector temperatures, scan mirror not pointing toward the
Earth, etc.

• The instrument noise has changed or is significantly different that NE∆N (e.g., in warm scenes the
AIRS noise in the short wave becomes larger, hence, RSj will be larger than 1).

• The spectrum contains information that was not in the eigenvector training ensemble, Je. For example,
a volcano can produce trace gases, such as sulfur dioxide, which has a unique spectral structure that is
not represented in our Kmax eigenvectors.

The value of RSj is shown in the top panel of Fig. 11.17 from the real-time NOAA radiance monitoring
web-page (http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html). In this case an eigenvector set
trained on 1688 channels was used of which 8 have been permanently removed in the eigenvector training
discussed in this ATBD. On the bottom panel the number of channels marked bad is also shown. In Fig.
11.18 the reconstruction score is shown for a single day. Notice that the ascending (daytime) orbits show
some high scores over desert regions.
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Figure 11.17: Upper panel: The value of RSj versus time. Lower panel: Number of channels marked bad by
the L1 QA. Ascending observations shown in gold color and descending shown in blue. From NOAA real-time
web site, http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html

Figure 11.18: The value of RSj as a function of geography for ascending (top) and descending (bottom)
observations. From NOAA real-time web site, http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html
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11.5.7 Computing Temperature & Skin Temperature from Principle Compo-
nent Scores

The temperature profile is derived from PCS’s computed in Eqn. 11.86 as follows

T (L) = Av
i +Av

i,k · Pk,j i = 1 + 4 · (L− 1) (11.90)

and Tsurf is computed as

Tsurf = Av
i +Av

i,k · Pk,j i = 397 (11.91)

Note that the regression coefficients can be related to empirical kernel functions, K̃n(L), for channel n
and pressure layer L. In the eigenvector regression the empirical kernel functions can be computed for each
view angle regime, v, by

K̃n(m)(L,Θ) = A
v(α)
i(L),k · Ek,m + A

v(α)
i(L),Kmax+2

·
(

1− cos
(
π ·Θ
180

))
(11.92)

where, we assumes positive view angles (to eliminate need for scan side predictor) and i(L), is the subset of
indices for the selection of the geophysical parameter group (e.g., T(L), is given for L = 1, 2, 3, . . ., which is
given by i = 1, 5, 9, . . . in Table 11.2)

Figure 11.19: Example empirical kernel functions using Eqn. 11.92 for four AIRS channels using the NOAA
v4.0 regression. Black is at α = 47o, red is at α = 35o, green is at α = 25o, and blue is at α = 10o.

An estimate of the propagated error in the principal components for case j, δP̂k,j , can be given by the
root-sum-square (RSS) of the linear combination and an estimate of the error in the radiance for case j,
δRn(m),j . This results in an error in the argument of δΘ̃n(m),j ≡ δRn(m),j/NE∆Nn(m) and

δP̂k,j =

√√√√ 1√
λk

Me∑
m=1

(
Ek,m · δΘ̃n(m),j

)2

=

√√√√ 1√
λk

Me∑
m=1

(
Ek,m ·

δRn(m),j

NE∆Nn(m)

)2

(11.93)
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A propagated error estimate can be computed from the linear combination of principal components

δX̂i,j =

√∑
i

(
Av

i,k · δPk,j

)2

(11.94)

11.5.8 Computing Water Vapor Regression from Principle Component Scores

For moisture, the regression is trained on both the loge(rw(L)) and rw(L), where rw is the mass mixing
ratio of water in grams/kilo-gram (g/kg). Both regressions are computed and the total precipitable water
is computed from the linear mass mixing ratio regression. For each level, L, the index into the coefficient
tables, i1 for rw and i2 for loge(rw) can be computed easily (see Table 11.2)

rw1(L) = Av
i1 +Av

i1,k · Pk,j i1 = 2 + 4 · (L− 1) (11.95)

rw2(L) = exp
(
Av

i2 +Av
i2,k · Pk,j

)
i2 = 3 + 4 · (L− 1) (11.96)

For each profile we can compute the total precipitable water (TPW) as follows

TPW =
L∑

L=1

rw1(L) ·∆p(L)
g

(11.97)

If the TPW is less than 1 then we use rw(L) = rw1(L) otherwise the mass mixing ratio used is rw(L) =
exp(rw2(L)). In addition, if TPW is less than 1 and any element of rw1(L) is less than zero then exp(rw2(L))
is substituted for that element (this may be changed for v5.0, since we do see some instances of very thin
dry layers induced by this). In addition, the individual elements are never allowed to exceed the saturation
mixing ratio, rs(L), given by

es =
8∑

i=0

ai · (T − 273.15)i (11.98)

The choice of coefficients is determined via an ICE flag. Water is valid over the range of -85≤ T−273.15 ≤
70 Celsius and the ice coefficients are valid over the range of -85 ≤ T − 273.15 ≤ 70 Celsius. The coefficients
are given in Table 3.5.

If we assume mwt � mwd and g = 980.64 ≈ 1000 then the mass mixing ratio can be converted to layer
column density (molecules/cm2) as follows

∆Cw(L) =
rw(L) ·NA

mww · 1000 ·∆p(L)
(11.99)

where mwt ≡ mwd + mww is the molecular weight for air, mwd is the molecular weight of dry air, mww is
the molecular weight of water, mww = 18.0151 grams/mole, and NA is Avogadro’s number = 6.02214199
·1023 molecules/mole. The conversion to layer column density is done by the routine colden.F. In v5.0 we
will remove the approximations above. This should remove a moist bias of approximately 2% in the tropical
region.

In a system that has performed a microwave physical retrieval of water vapor we can improve the
regression solution over ocean if we adjust the regression water vapor to the total column water vapor
from the microwave. This is done by summing the layer column densities from the microwave retrieval,
CMIT

w =
∑

∆CMIT
w (L), which is the total column density in molecules/cm2. The same calculation is done

for the regression retrieval resulting in CREG
w . We then multiply the layer column density by the ratio of the

total column densities from the regression and microwave retrieval,
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∆CADJ
w (L) = ∆CREG

w (L) ·




Lbot∑
L=1

∆CMIT
w (L)

Lbot∑
L=1

∆CREG
w (L)


 (11.100)

This is done in the routine amsu adj.F. Note that in version 5.0 this correction will be removed. With the
loss of HSB the total water column derived from the AMSU radiances is not as accurate and this correction
is removed.

11.5.9 Computing Ozone Mixing Ratio from Principle Component Scores

For ozone, the regression is trained on the natural logarithm of mass mixing ratio of ozone, loge(ro(L)), in
grams/kilo-gram (g/kg). For each level L (see Table 11.2) the mixing ratio of ozone can be given as

ro(L) = exp
(
MIN

[−3.5, Av
i +Av

i,k · Pk,j

])
i = 4 + 4 · (L− 1) (11.101)

Again, if we assume mwt � mwd and g = 980.64 ≈ 1000 then the mass mixing ratio can be converted to
layer column density (molecules/cm2) as follows

∆Co(L) =
ro(L) ·NA

mwo · 1000 ·∆p(L)
(11.102)

where mwo = 47.9982 grams/mole is the molecular weight of ozone and NA is Avogadro’s number =
6.02214199 ·1023 molecules/mole.

11.5.10 The Surface Emissivity Regression

In the case of surface emissivity there is no truth datasets that we can utilize to train regressions with real
AIRS radiance data. For emissivity we simulated Jε(l) cases where the infrared radiances were computed
from the ECMWF forecast (December 15, 2000) and a surface emissivity model (Fishbein et al., 2003) was
used for l different kinds of surface conditions (in v4.0 we performed separate regressions for land, ocean,
ice, and snow, see Table 11.5). The eigenvector approach was not used. We used a subset of AIRS radiances
for Mε window channels, R(n(m),j) to regress against the emissivities used to product those radiances, ε(i, j).
The Mε frequencies, n(m) are given in Table 11.4. The 39 frequencies where emissivity, ε(i, j), was specified
is given in Table 11.3. Notice that short-wave observations are not used to predict short-wave emissivity.
This regression relies on statistical correlations between the short-wave and long-wave to solve for these
parameters.

The predictors consisted of the Mε radiances, written as signal-to-noise (see Eqn. 11.64), and two
predictors to account for atmospheric transmittance as a function of viewing angle; one for which side of
nadir the observation was made and the other is the cosine of the view angle. Since all Jε(l) cases in the
training ensemble see the surface, there is no subset for topography. Also, window channels require only a
minor adjustment for view angle, so the complete ensemble was used rather than making separate regression
for each view angle regime, as was done for the atmospheric parameters. The ocean emissivity is a well
modeled function (i.e. the AIRS science team uses the Masuda et al. (1988) model as modified by Wu and
Smith (1997). The regression was performed on land, ocean, ice, and snow emissivity models. Fig. 11.20 and
Fig. 11.21 are the average and standard deviation of surface emissivity for the four different types of land
from the emissivity training used in the AIRS v4.0 regression. The complete predictor vector can be written
as
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Pk,j =




R1,j

R2,j

. . .
RMε,j)

1−sign(αj)
2

1− cos(π·αj

180 )




i = 1,M + 2 (11.103)

where we can write,

∆Xi,j = Xi,j− < Xj >Jε(l) (11.104)

with the Xi’s defined in Table 11.4 and the least square solution is given by

Al
i,k = ∆Xi,j ·∆PT

j,k ·
[
∆Pk,j ·∆PT

j,k

]−1
for the Jε(l) cases (11.105)

Again, once Al
i,k is determined we can combine the average of the geophysical emissivity parameter and

the average of the predictor into a single value, called Ai, so that our regression equation becomes

Xj(v,L) = Al
i +Al

i,k · Pk,j (11.106)

where Al
i is defined as

Al
i ≡ Al

i,k· < Pk,j >Jε(l) (11.107)

These regression coefficients have the same format as the ones described in sub-section 11.5.3 with
geophysical index number given in Table 11.2.

We use the land fraction and microwave surface class (defined in Table 11.6 to determine which surface
regression coefficients to utilize. In Table 11.5 the logic used in both training and application of the coefficients
is shown.

Table 11.3: Frequencies for the 39 point model for emissivity regression
649.35 666.67 684.93 704.22 724.64
746.27 769.23 793.65 819.67 847.46
877.19 909.09 943.40 980.39 1020.4
1063.8 1111.1 1162.8 1204.8 1234.6
1265.8 1298.7 1333.3 1369.9 1408.4
1449.3 1492.5 1538.5 1587.3 1639.3
2173.9 2222.2 2272.7 2325.6 2380.9
2439.0 2500.0 2564.1 2631.6
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Table 11.4: AIRS channels used in surface emissivity regression
v3.0, v3.18 v4.0, (after 4/10/04)

n f(n), cm−1 n f(n), cm−1

475 801.00 475 801.0990
484 804.29 484 804.3860
497 809.08 497 809.1800
528 820.73 528 820.8340
587 843.81 587 843.9130
787 917.21 787 917.3060
791 918.65 791 918.7470
843 937.81 843 937.9080
914 965.32 870 948.1840
950 979.02 914 965.4310
1138 1072.38 950 979.1280
1178 1092.31 1119 1063.285
1199 1103.06 1123 1065.216
1221 1114.53 1178 1092.451
1237 1123.02 1199 1103.199
1252 1131.08 1221 1114.675
1263 1216.84 1237 1123.162
1285 1228.09 1252 1131.229

1263 1216.974
1285 1228.225

Table 11.5: NOAA regression surface classification determination from % land cover (p) and microwave
surface classification (m)

surface
l class logic
1 non-frozen land ((m=0) or (m=1)) and p > 1%
2 non-frozen water (m=2) or (p ≤ 1% and ((m=0) or (m=1)))
3 ice (m=3) or (m=4) or (m=5)
4 snow (m=5) or (m=7)

Table 11.6: Microwave Surface Class Definitions
microwave surface

m classification
0 coastline
1 land (land cover > 50%)
2 ocean
3 high microwave emissivity sea ice
4 low microwave emissivity sea ice
5 snow (higher frequency scattering)
6 glacier/snow (very low frequency scattering)
7 snow (lower frequency scattering)
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Figure 11.20: The mean value of the emissivity training database for the 4 surface types used in the v4.0
regression

Figure 11.21: The standard deviation of the emissivity training database for the 4 surface types used in the
v4.0 regression
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Table 11.7: AIRS channel’s used in eigenvector computation

1 2 3 4 5 6 7 8 9 10 11 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119 120 123 124 125 126
127 128 129 130 131 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
235 236 237 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
266 267 268 269 270 271 272 273 274 275 278 279 280 281 282
283 284 285 286 287 289 290 293 294 295 296 297 298 299 300
301 302 303 304 306 307 308 309 310 311 314 315 316 317 319
320 322 323 325 327 329 330 332 333 334 336 337 338 339 340
343 344 345 347 348 349 351 352 354 355 356 357 358 359 360
362 364 366 368 369 371 375 376 378 380 383 385 387 389 390
392 393 394 395 397 399 400 403 406 407 408 409 410 411 414
416 417 418 419 421 422 423 424 425 426 427 429 430 433 435
436 437 438 439 441 443 444 445 449 450 452 453 455 456 459
462 465 469 471 473 475 476 478 479 480 482 483 484 485 486
493 496 497 501 503 504 505 509 513 516 518 519 521 522 523
524 526 527 528 529 530 532 533 536 538 539 540 541 544 546
547 548 550 551 552 555 556 559 560 562 563 564 565 566 567
570 572 575 576 577 579 580 584 587 592 593 594 597 600 606
607 609 613 614 616 617 618 619 621 626 627 628 632 633 634
635 637 638 639 640 641 642 643 644 645 646 647 648 649 650
651 652 653 654 656 657 658 659 660 661 662 663 665 666 667
668 669 671 672 673 674 675 676 677 679 680 683 684 685 687
689 690 691 692 693 694 695 696 697 698 699 700 701 702 704
705 707 708 709 710 711 712 713 714 718 719 720 721 722 724
725 726 727 728 729 730 731 732 735 737 738 739 740 741 744
745 746 748 752 754 757 758 759 761 763 764 766 767 769 771
772 774 775 776 777 778 779 780 781 782 785 786 787 788 791
792 793 794 796 797 798 799 804 805 807 808 809 810 811 812
813 814 816 818 819 820 821 822 823 824 825 829 833 838 839
840 843 844 845 846 847 848 851 852 853 854 856 857 858 861
862 863 869 870 872 873 874 877 881 882 888 893 895 896 897
898 902 903 904 905 908 909 914 916 921 924 929 932 933 935
936 944 946 948 950 951 953 955 958 959 960 963 964 967 968
969 971 972 973 976 977 978 982 984 985 986 987 988 989 992
993 996 997 998 999 1000 1002 1003 1004 1005 1006 1008 1010 1011 1012
1015 1016 1017 1019 1020 1022 1024 1025 1026 1027 1028 1029 1030 1031 1032
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Table 11.7 AIRS channels (continued)

1033 1034 1038 1039 1042 1043 1044 1045 1046 1047 1048 1050 1051 1052 1055
1057 1058 1060 1061 1062 1064 1065 1067 1069 1070 1071 1072 1074 1075 1077
1078 1079 1080 1081 1082 1083 1084 1085 1086 1088 1089 1090 1097 1098 1099
1100 1101 1103 1104 1106 1107 1108 1110 1111 1113 1114 1115 1116 1117 1118
1119 1121 1122 1123 1130 1131 1134 1136 1137 1139 1140 1141 1142 1143 1144
1145 1146 1147 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
1162 1163 1164 1168 1169 1170 1171 1172 1174 1175 1176 1177 1178 1179 1180
1181 1182 1183 1184 1186 1187 1188 1189 1194 1195 1196 1199 1200 1201 1202
1204 1205 1206 1207 1209 1211 1212 1213 1214 1215 1218 1219 1220 1221 1223
1226 1227 1228 1229 1231 1232 1233 1234 1235 1236 1237 1238 1241 1245 1247
1248 1249 1250 1252 1253 1254 1257 1258 1259 1260 1261 1262 1263 1264 1265
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1284
1285 1286 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
1329 1330 1331 1332 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
1345 1346 1347 1348 1350 1352 1353 1356 1357 1358 1359 1360 1361 1362 1363
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
1379 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
1395 1396 1398 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
1472 1473 1474 1475 1477 1478 1480 1481 1482 1494 1495 1496 1497 1498 1499
1500 1501 1502 1503 1504 1505 1506 1508 1509 1510 1511 1513 1514 1516 1517
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
1533 1534 1535 1536 1537 1539 1540 1541 1542 1544 1545 1546 1547 1548 1549
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1580
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
1596 1597 1598 1599 1600 1601 1602 1604 1605 1606 1607 1608 1609 1610 1611
1612 1613 1614 1615 1616 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1673
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
1707 1708 1709 1710 1711 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
1724 1737 1738 1739 1740 1742 1743 1744 1745 1747 1748 1749 1750 1751 1752
1753 1754 1755 1756 1757 1758 1760 1761 1762 1763 1764 1765 1766 1767 1768
1769 1770 1771 1772 1773 1775 1776 1777 1778 1779 1780 1783 1785 1789 1790
1793 1794 1795 1796 1797 1798 1799 1800 1801 1803 1804 1805 1806 1807 1808
1809 1810 1811 1813 1814 1815 1816 1817 1818 1819 1821 1822 1823 1824 1825
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1838 1839 1840 1841 1843
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 2109 2110 2111
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
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Table 11.7 AIRS channels (continued)

2142 2143 2144 2145 2146 2147 2148 2149 2150 2152 2154 2155 2156 2157 2158
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
2234 2235 2236 2237 2239 2240 2241 2242 2244 2245 2246 2247 2248 2249 2250
2251 2252 2253 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
2285 2286 2287 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2358 2360 2361 2362
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2376 2377 2378
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Chapter 12

Neural Networks

That arithmetic is the basest of all mental activities is proved by the fact that it is the only one that can be
accomplished by a machine. German philosopher Arthur Scopenhauer.

12.1 Neural Network representation of Eigenvector regression

We can think of the regression operator between temperature and radiance, TL = AL,n ·Rn as a set of weights,
AL,n that map the N measurements (radiances) to the L parameters.

In eigenvector regression, we have a hidden layer of functions, with an additional set of weights (the
eigenvectors, Ek,n) that relate the radiances, R(n) to the principal component scores, Pk, and new weights
that relate the principal component scores to the parameters, TL. The functions in this linear operator is
the identity matrix, Ik,k. The eigenvector regression relationship is given by TL = Pk ·Ek,n ·Rn whereas the
neural network analogy would be TL = wL,k · Ik,k · wk,n ·Rn.

This can be represented graphically be a column of circles that represent the instrument channels (radi-
ances) on the right, each one is connected to each element of a column of circles which represent our linear
function, Ik,k, in the middle. Each element of the principal component column is connected to each element
of a column on the left side, representing our temperature parameters. The interconnecting lines are the
weights, wL,k on the left and wk,n on the right. This is illustrated in Fig. 12.1 for a N = 5, K = 4, and
L = 3.

12.2 Introduction to Neural Networks

12.3 References

Aires, F., W.B. Rossow, N. Scott and A. Chedin 2002. Remote sensing from the infrared atmospheric
sounding interferometer instrument. 2. Simultaneous retrieval of temperature, water vapor and ozone
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Figure 12.1: Illustration of a neural network representation of the eigenvector regression.
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Chapter 13

Marquardt-Levenberg

This section is based on concepts developed in the Chapter 14, optimization, in the PHYS 640 notes.

13.1 Marquardt-Levenberg approach

Marquardt, 1962 published a technique for combining Newton’s approach with that of the steepest descent
method. His work referenced earlier work by Levenberg, 1943 and one can find this method attributed
to one or both of these authors ( see “Optimization using steepest descent method” in Phys 640 notes,
Chapter.section 14.2.1).

For a function of multiple dimensions we are finding the extrema of a multi-dimensional surface and the
minima is found by simultaneously solving for roots of the partial derivatives. The method of steepest decent
uses the local gradient to search for a new value of an extrema

�xi = �xi−1 − αi · ∇f(�xi−1) (13.1)

Here, w will rewrite the steepest descent method as

− 1
αi
· (�xi − �xi−1) = ∇f(�xi−1) (13.2)

Newton’s method (see “Optimization using Newton’s method” in Phys640 notes, Chapter.section 13.2.2) is
written as

�xi = �xi−1 − (Hf (�xi−1))
−1 · ∇f(�xi−1) (13.3)

where, the Hessian operator is given by

(Hf (�x))i,j =
∂2f(�x)
∂xi · ∂xj

(13.4)

• If Hf (�x) is positive definite, then �x is a minimum of f

• If Hf (�x) is negative definite, then �x is a maximum of f

• If Hf (�x) in indefinite, then �x is a saddle point of f .

Here we will rewrite Newton’s methods as follows:

− (Hf (�xi−1)) · (�xi − �xi−1) = ∇f(�xi−1) (13.5)

By combining these two equations one can achieve the speed of Newton’s method with the stability of the
steepest descent method.
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(
Hf (�xi−1) + λ · 1

αi

)
· (�xi − �xi−1) = −∇f(�xi−1) (13.6)

When λ→ 0 the method is the quadratic Hessian approach and then λ is large the method is diagonal
and is using steepest descent.

In Press et al., 1986, pg. 523 the Levenberg-Marquardt is discussed in terms of a solution to a function
f(t, a), where a are parameters. The merit function is as a root-sum-square of the weighted residuals, given
by

χ2(a) =
N∑

n=1

[
yn − f(tn[,i],�a)

σn

]2
(13.7)

where σn is the standard deviation or error in the measurements, yn. tn[,i] are the independent measurements.
The solution of J parameters aj from the residuals. NOTE: aj are analogous to the x used in the previous
discussions. For a given iteration, i, the previous value of �xi = ai

j .

∇f → ∂χ2

∂aj
= −2

N∑
n=1

[
yn − f(tn[,i],�a)

]
σn

· ∂f(tn[,i],�a)
∂aj

j = 1, 2, . . . , J (13.8)

H → ∂2χ2

∂ak∂aj
= 2

N∑
n=1

1
σ2

n

·
[
∂f(tn[,i],�a)

∂ak

∂f(tn[,i],�a)
∂aj

− [yn − f(tn[,i],�a)
] ∂2f(tn[,i],�a)

∂ak∂aj

]
(13.9)

The variable λ is initially set to a small value (λ ≈ 0.001) and a solution is computed. If the χ2(�a+∆�a) of
the residuals decrease with the new solution, then λ is decreased by an order of magnitude and that solution
is kept. If the χ2(�a + ∆�a) of the residuals increase, then λ is increased by an order of magnitude and the
solution is not kept for that iteration (i.e., go back to the steepest descent method).

In the least squares terminology, the Jacobian, given by J in the PHYS 640 notes and S in these notes is
related to the gradient and partial derivatives in the Hessian. Therefore, the Marquardt-Levenberg approach
is using the departure from the model as a regularization component. We can write the solution for the
desired change in x in terms of the generalized sensitivity matrix, J

∆x =
[
STWS −∆y

∂2f(tn[,i],�a)
∂ak∂aj

]−1

· ST ·∆y (13.10)

13.2 References for ML method
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Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust.
Appl. Math v.11 p.431-441.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettering 1986. Numerical Recipes in FOR-
TRAN : the art of scientific computing (Cambridge Univ. Press), 818 pgs.



Chapter 14

Minimum variance Regularization

Figure 14.1: Henry Fleming (circa 1991)
The notes in this section are based on a course Henry Fleming taught in 1978.

The minimum variance method is also known as maximum probability method, statistical regularization,
and Weiner-Kolmogorov smoothing.

If we have a particular ensemble of K sets of measurements, R̂n,k and we have an associated first guess
geophysical state, X0

L,k, for each case k then we can improve the estimate of the geophysical state with an
operator of the form

∆XL,k = CL,n ·∆R̂n,k (14.1)

where,

∆XL,k ≡ Xi+1
L,k− < Xi

L,k >k and, (14.2)

∆R̂n,k ≡ R̂n,k −Rn(Xi
L,k) (14.3)

352
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The first iteration, i = 1 would begin with Xi
L,k = X0

L,k

14.1 Minimum variance for small number of measurements, N < L

We can multiply both sides of Eqn. 14.1 by, ∆R̂T
k,n

∆X̂L,k ·∆R̂T
k,n = CL,n ·∆R̂n,k ·∆R̂T

k,n (14.4)

and the least squares solution is given by

CL,n = ∆X̂L,k ·∆R̂T
k,n ·

[
∆R̂n,k ·∆R̂T

k,n

]−1

(14.5)

In the minimum variance method we substitute a linearized expression for the forward model (Taylor
expansion, see Eqn. 8.7) given by

∆R̂n,k = Sn,L ·∆X̂L,k + εn,k (14.6)

where εn,k contains the effects of

• linearization errors

• measurement noise

• forward model noise

into Eqn. 14.5 where the exact noise εn,k is NOT known, but we will apply statistical properties of the noise
after we simplify the expression. Notice that there is an assumption that S does not depend on the state. In
atmospheric remote sounding this is usually not true; however,

CL,n = ∆X̂L,k ·
(
Sn,L ·∆X̂L,k + εn,k

)T

·
[(
Sn,L ·∆X̂L,k + εn,k

)
·
(
Sn,L ·∆X̂L,k + εn,k

)T
]−1

(14.7)

Noting that (A ·B · C)T = CT ·BT ·AT we have

CL,n = ∆X̂L,k ·∆X̂T
k,L · ST

L,n ·+∆X̂L,k · εTk,n ·
[(
Sn,L ·∆X̂L,k + εn,k

)
·
(
X̂T

k,L · ST
L,n + εTk,n

)]−1

(14.8)

CL,n =
(
∆X̂L,k ·∆X̂T

k,L · ST
L,n ·+∆X̂L,k · εTk,n

)
(14.9)

·
[
Sn,L ·∆X̂L,k ·∆X̂T

k,L · ST
L,n + εn,kX̂

T
k,L · ST

L,n + Sn,L ·∆X̂L,k · εTk,n + εn,k · εTk,n

]−1

(14.10)

The measurement noise, εn,k is uncorrelated with the atmospheric state XL,k. Also, we will assume
random noise such that an average of the noise over the ensemble is zero, < εn,k >k= 0. Therefore, an
implied summation (an average) of ε ·X over the ensemble K will yield zero and

CL,n = ∆X̂L,k ·∆X̂T
k,L · ST

L,n ·
[
Sn,L ·∆X̂L,k ·∆X̂T

k,L · ST
L,n + εn,k · εTk,n

]−1

(14.11)

This is the form used by retrievals with small number of channels (e.g., NOAA’s MIRS and ATOVS systems).
The quantity ∆X̂L,k ·∆X̂T

k,L is the covariance of the state with respect to the first guess and the quantity
εn,k ·εTk,n is the covariance of error in the measurements. Since these are statistical quantities we can determine
these quantities from our ensemble and store them. Using the definitions given in Eqn. 8.126 and Eqn. 8.108
we obtain
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CL,n = CV(X)L,L · ST
L,n ·

[
Sn,L · CV(X)L,L · ST

L,n + CV(ε)n,n

]−1
(14.12)

Thus the minimum variance solution for an independent set of measurements, ∆R̂n, is given by

∆XL = CL,n ·
(
R̂n −Rn(XL)

)
(14.13)

Notice that the introduction of the CV(X)’s weights the set of equations, relative to the simple least squares
solution (compare to Eqn. 8.76), while the CV(ε)’s condition the inverse. This is the derivation originally
done by Fleming. The difference between the least squares operator and Eqn. 14.12 is the damping provided
by the CV (X) term. On the first iteration a component of the radiances are not-believed; however, this
a fraction of this component with be believed on subsequent iterations. Therefore, if we allow ourselves to
iterate Eqn. 14.12 then we will ultimately converge to the least squares solution without damping and the
advantage of using the minimum variance approach will be lost.

In Section 8.12.2 we derived the a general expression for minimization of the radiances and the background
field. The resulting Eqn. 8.170 with α = 1, β = 0 is the iterative minimum variance equation.

Xi
L = Xi−1

L + CV(X)L,L · ST
L,n ·

[
Sn,L · CV(X)L,L · ST

L,n + CV(ε)n,n

]−1

·
((
R̂n −Rn(Xi−1

L )
)
− Sn,L ·

(
Xi−1

L −X0
L

))
(14.14)

The background term, Sn,L ·
(
Xi−1

L −X0
L

)
is initially zero for iteration i = 1.

14.2 Minimum variance for over-determined cases

If N > L then the inverse in Eqn. 14.12 is time consuming to compute. We can use the matrix identity
discussed in Section 8.12.3. If we utilize our variables (K=S, N ≡ CV(ε) and α ·C ≡ CV(X) then Eqn. 8.169
becomes

ST · [CV(ε)−1 · S · CV(X) · ST + In,n

]
=

[
ST · CV(ε)−1 · S · CV(X) + IL,L

] · ST

ST · CV(ε)−1 · [S · CV(X) · ST + CV(ε)
]

=
[
ST · CV(ε)−1 · S + CV(X)−1

] · CV(X) · ST[
ST · CV(ε)−1 · S + CV(X)−1

]−1 · ST · CV(ε)−1 = CV(X) · ST · [S · CV(X) · ST + CV(ε)
]−1

(14.15)

so that Eqn. 14.12 becomes

CL,n =
[
ST

L,n · (CV(ε)n,n)−1 · Sn,L + (CV(X)L,L)−1
]−1

· ST
L,n · (CV(ε)n,n)−1 (14.16)

This form is sometimes called the Rodgers-Strand-Westwater solution.
In general, Eqn. 14.12 is equal to Eqn. 14.16, it is only a matter of computational convenience which

one to use. If the parameters have a small variability then CV(X)L,L is small and there is a large amount of
damping for those coefficients.

Again, if Eqn. 14.16 is to be iterated we need to apply the background term to avoid believe what we
damped on previous iterations. If we set α = 1 and β = 0 in Eqn. 8.167 of Section 8.12.3 then we obtain

Xi
L = Xi−1

L +
[
ST

L,n · (CV(ε)n,n)−1 · Sn,L + (CV(X)L,L)−1
]−1

·ST
L,n · (CV(ε)n,n)−1 ·

((
R̂n −Rn(Xi−1

L )
)
− Sn,L ·

(
Xi−1

L −X0
L

))
(14.17)

In this formulation, the background term is zero when i = 1. Subsequent iterations will not believe the
damped components of previous iterations.
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14.3 Minimum information Regularization

The minimum information regularization is used when the covariances in Eqn. 14.12 or 14.16 are not known.
If we know some minimal information about the statistical behavior of the system, then we can compute a
simpler value CL,n for use in the solution of

∆XL = CL,n ·∆Rn (14.18)

In this case we assume a simple form for the covariance matrices given by Eqn. 8.127 and Eqn. 8.109
where IL,L is an L by L identity matrix and In,n is an n by n identity matrix. The values of σ() are standard
deviations of the argument. If we substitute these into Eqn. 14.12 we would obtain

CL,n = ST
L,n ·

[
Sn,L · ST

L,n + γ · In,n

]−1
(14.19)

or if L < N then we would substitute into Eqn. 14.16 to obtain

CL,n =
[
ST

L,n · Sn,L + γ · IL,L

]−1 · ST
L,n (14.20)

where

γ ≡ σ2
ε

σ2
X

(14.21)

14.4 NOAA Operational Minimum Variance Derivation

The section is adapted from the AIRS ATBD Version 2.2 (Apr. 26 ,2001, JPL D-17006). The notation has
been changed to be consistent with these notes.

The NOAA AIRS minimum variance approach uses the statistical regression as a first guess. The
regression training ensemble can be used to build an error covariance matrix for the minimum variance
algorithm. In this section we will summarize the regression training and derive the equation for the covariance
matrix used in this minimum variance approach.
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14.4.1 Covariance of the regression operator

definition of additional symbols
in post-launch eigenvector algorithm

symbol description
n channel number, AIRS original index
m channel sub-set index number
n(m) sub-set of channels used in physical retrieval
i geophysical parameter index
j Case number for a given profile set
L geophysical parameter index
Xi geophysical parameter, e.g. T (L), q(L), etc for case j
NE∆N(n(m)) Noise Equivalent Difference Radiance
∆Θ̃n(m),j Argument of Radiance
Rn(m),j observations for channel n, case j
k Eigenvalue index (k=1 is largest eigenvalue)
λk Eigenvalue
Ek,n Eigenvector
Pk,j Principal Component Score at view angle v
v view angle index
P v(k, j) Predictor Array at view angle v
Av

L,k regression coefficients at view angle v

In Section 11.5 we derived the regression estimate of the geophysical state using singular value decompo-
sition to remove singular components of the radiance covariance. This form of regularization of the regression
operator has the advantage of reducing the noise in spectra containing a high degree of redundancy.

Here, we will write the regression equation as

Xi = Av
i +Av

i,k(L) ·
[

1√
λ(k)

· Ek,n ·∆Θ̃n

]
(14.22)

where, the effective radiances, ∆Θ̃n, are defined in Eqn. 11.64 that is reproduced here for convenience

∆Θ̃n(m),j ≡ Rn(m),j

NE∆Nn(m)
− < Rn(m),j >j

NE∆Nn(m)
(14.23)

and, λ(k) and Ek,n are the eigenvalue and eigenvectors of the radiance covariance computed via Eqn. 11.65
from a training ensemble of J cases. The training ensemble is selected within groups of viewing angle (zenith
angle). The number of cases within the ensemble is a function of altitude due to topography. The training
ensemble of geophysical cases can be written as, Xi,j(v,Lbot) where j(v, Lbot) is the subset of cases that satisfy
the criteria in Table 11.1 AND have valid geophysical parameters in the layer under consideration in Xi. The
associated ensemble of radiances, ∆Θ̃n(m),j(v,Lbot) are then used to derive the regression coefficients, Av

i and
Av

i,k(L).
If we apply our regression to the training ensemble we have an error given by

∆Xi,j(v,LBOT ) = Av
i +Av

i,k(L) ·
[

1√
λ(k)

· Ek,n ·∆Θ̃n,j(v,LBOT )

]
− Xi,j(v,LBOT ) (14.24)

For each kind of retrieval (temperature, moisture, etc.) the covariance is computing only over the group
of geophysical parameters. For example, in a retrieval of temperature, T (L), for layers L = 1, LBOT , only
the indices for T (L) in Table 11.2 would be used, that is, i = 1, 5, 9, . . . , 1 + 4 · LBOT .

The covariance matrix of this ensemble for a retrieval group, SL,L is given by
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SL,L =
1

J(v, LBOT )
·∆Xi,j(v,LBOT ) ·

(
∆Xi,j(v,LBOT )

)T (14.25)

where it is understood that there are separate matrices of coefficients for temperature and moisture retrievals.
This is the user must be aware of what geophysical parameters are included in the subset denoted by L.

14.4.2 Minimum Variance formulation

definition of additional symbols
in post-launch eigenvector algorithm

symbol description
i superscript denoted iteration number, starting with 1
L index for a group of geophysical parameters, e.g., T (L)
Xfg

L regression estimate of state
N−1

n,n inverse of the covariance of NE∆N
R̃n(m) observations for channel n
Rn(m)(Xi

L) radiance computed from the current solution

We can also use our forward model to compute radiances from the regression solution, Xfg
i ≡ Xi, given

in Eqn. 14.22. We will denote these radiances as Rfg
n and they will be used to co

We can defined a subset of M channels, n(m), for our physical retrieval and minimize the difference
between the observed radiances, R̃n(m), and the radiances computed from the current solution, Rn(m)(Xi−1

L )
at iteration i.

The iterative minimum variance equation can be written as

Xi
L = Xfg

L +
[
KT

L,n ·N−1
n,n ·Kn,L + SL,L

]−1 ·KT
L,n ·N−1

n,n ·(
R̃n(m) −Rn(m)(Xi−1

L )−Kn,L ·
(
Xfg

L −Xi
L

))
(14.26)

where, X0
L ≡ Xfg

L . The kernel functions, Kn,L are given by derivatives of the radiance with respect to
geophysical parameter, XL.

Kn,L ≡
∂Rn(m)

∂XL

∣∣∣∣
Xi−1

(14.27)

and can be computed by finite differences or the methods discussed in Section 8.6. The most significant
computation cost in Eqn. 14.26 is the matrix inversion. For a 97 layer retrieval this cost can be reduced by
employing eigenvector methods.

We begin by taking a singular value decomposition of the first guess error covariance matrix

SL,L = EL,k · Λk,k · ET
k,L (14.28)

where the eigenvectors, EL,k and eigenvalues, λ(k) = Λk,k, should not be confused with the radiance eigen-
vectors and eigenvalues discussed in the regression context. For simplicity we will defined

Qi
n ≡

(
R̃n(m) −Rn(m)(Xi−1

L )−Kn,L ·
(
Xfg

L −Xi
L

))
(14.29)

Substitution of Eqn. 14.28 and Eqn. 14.29 into Eqn. 14.26 yields

Xi
L = Xfg

L +
[
KT

L,n ·N−1
n,n ·Kn,L + EL,k · Λk,k · ET

k,L

]−1 ·KT
L,n ·N−1

n,n ·Qi
n (14.30)

which is equal to
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[
KT

L,n ·N−1
n,n ·Kn,L + EL,k · Λk,k · ET

k,L

] · (Xi
L −Xfg

L

)
= KT

L,n ·N−1
n,n ·Qi

n (14.31)

multiplying both sides by ET
k,L and noting that ET

k,L · EL,k is equal to the identity matrix, Ik,k, will yield

[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L + Ik,k · Λk,k · ET
k,L

] · (Xi
L −Xfg

L

)
= ET

k,L ·KT
L,n ·N−1

n,n ·Qi
n (14.32)

also, multiplying the leftmost quantity by the identity matrix, in the form of Ik,k = ET
k,L · EL,k

[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + Λk,k

] · ET
k,L ·

(
Xi

L −Xfg
L

)
= ET

k,L ·KT
L,n ·N−1

n,n ·Qi
n (14.33)

rearranging,

ET
k,L ·

(
Xi

L −Xfg
L

)
=
[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + Λk,k

]−1
ET

k,L ·KT
L,n ·N−1

n,n ·Qi
n (14.34)

multiplication of both sides by ET
L,k

(
Xi

L −Xfg
L

)
= EL,k ·

[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + Λk,k

]−1
ET

k,L ·KT
L,n ·N−1

n,n ·Qi
n (14.35)

or finally,

Xi
L = Xfg

L + EL,k ·
[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + Λk,k

]−1
ET

k,L ·KT
L,n ·N−1

n,n ·Qi
n (14.36)

replacing our temporary argument, Q yields the final form of the NOAA operational minimum variance
equation:

Xi
L = Xfg

L + EL,k ·
[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + Λk,k

]−1
ET

k,L ·KT
L,n ·N−1

n,n

·
(
R̃n(m) −Rn(m)(Xi−1

L )−Kn,L ·
(
Xfg

L −Xi
L

))
(14.37)

If the number of vertical degrees of freedom are significantly less than the number of radiative transfer
layers, L, then Eqn. 14.38 is more efficient due to the reduced dimensionality of the matrix inverse operator.
Analysis of λk is utilized to compute the number of degrees of freedom.

In practice it is necessary to employ a scalar tuning parameter, ω.

Xi
L = Xfg

L + EL,k ·
[
ET

k,L ·KT
L,n ·N−1

n,n ·Kn,L · EL,k + ω · Λk,k

]−1
ET

k,L ·KT
L,n ·N−1

n,n

·
(
R̃n(m) −Rn(m)(Xi−1

L )−Kn,L ·
(
Xfg

L −Xi
L

))
(14.38)

In Table 14.1 the number of degrees of freedom, K, and the tuning parameter used for the AIRS science
team algorithm are given

Table 14.1: Tuning Parameter and Degrees of Freedom for the NOAA minimum variance algorithm for the
AIRS instrument

Retrieval K ω
Temperature 15 1.5

Water 15 60
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Chapter 15

Linear Constrained

15.1 Traditional Derivation

There are a number of ways to derive the linear constraint algorithm. This discussion follows the derivation
given by Conrath (1980) and is as follows:

We would like to minimize the difference between ∆Rn and the calculated value Sn,L · ∆XL in Eqn.
8.70. Note that this works for both the integral equations as well as the midpoint quadrature approximation
to these equations. Herein we will consider the matrix formulation since it is somewhat easier to follow.

If the measurement error is given as ε we would like to minimize the square of the differences until they
less than or equal to the expected measurement error:

(Sn,L ·∆XL −∆Rn)2 ≤ ε2n (15.1)

While only a small subset of solutions will satisfy this condition, the solutions will still not be unique. In
linear constrained regularization We add an additional constraint that we require the solution to be smooth.
The smoothness condition is usually written as:

q = ∆XT
L ·HL,L ·∆XL (15.2)

where XT is the transpose of the change in temperature matrix and H is a matrix that defines the form of
smoothing. Usually, H is near diagonal and calculated using the kernel functions. In the simplest case the
matrix H is simply taken as the identity matrix. In this case, the condition q = ∆XT

L ·∆XL minimizes the
deviations between atmospheric levels and, therefore, minimizes the high frequency oscillations that can arise
in these types of inversions.

We are simultaneously required to satisfy the constraint that (Sn,L ·∆XL−∆Rn)2 ≤ ε2 while minimizing
∆XT

L · HL,L · ∆XL. Since two quantities are simultaneously minimized the q function needs to be scaled
so as not to over-emphasize the smoothing. Mathematically this would be called a Lagrangian multiplier,
however, physically it can be interpreted as degree of smoothing desired. The value of the multiplier, γ, is
usually considered a free parameter and is adjusted to obtain a reasonable fit. If the value of γ is large then
the inversion converges very slowly and the resultant profile will be very smooth. If the value of γ is very
small the inversion converges quickly with very small residuals, however, the vertical temperature profile is
likely to have unrealistic kinks and wiggles.

A good estimate of γ is the one from the minimum variance approach discussed in section 14:

γ ≈ σ2
R

σ2
T

(15.3)

where σI is the error estimate in the radiance and σT is the error estimate of the temperature profile. The
value of σI is usually given as the noise equivalent spectral radiance (NESR) and is determined in flight by

360
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making measurements of deep space. For the Voyager IRIS the NESR function is small at long wavenumbers
(the H2 bands in the 15-50 cm−1 region) and increases quickly at shorter wavenumbers. For Uranus and
Neptune the NESR is usually too large below 15 cm−1 to provide any useful inversions.

The estimation of σT is not as well determined and, usually, requires some experience to estimate.
Usually, a guess is made as to the desired uncertainty in the resultant profile and then an inversion is
attempted. The final temperature profile is analyzed and then γ is changes appropriately.

The linear constrained inversion method minimizes the following function:

J = (Sn,L ·∆XL −∆R)2 + γ · (∆XT
L ·HL,L ·∆XL

)
(15.4)

We find the extrema of this function by taking the first derivatives w.r.t. ∆XL as follows

1. expand the square

(Sn,L ·∆XL −∆R)2 = (Sn,L ·∆XL −∆Rn)T · (Sn,L ·∆XL −∆Rn) (15.5)
=

(
∆XT

L · ST
L,n −∆RT

n

) · (Sn,L ·∆XL −∆Rn) (15.6)

= ∆XT
L · ST

L,n · Sn,L ·∆XL −∆RT
n · Sn,L ·∆XL

− ∆XT
L · ST

L,n ·∆Rn −∆RT
n ·∆Rn (15.7)

2. Set the first derivatives set to zero

Note for each level, L, there is a derivative.

fL =
∂J

∂∆XL
(15.8)

fL =
∂

∂∆XL

[
∆XT

L · ST
L,n · Sn,L ·∆XL −∆RT

n · Sn,L ·∆XL

− ∆XT
L · ST

L,n ·∆Rn −∆RT
n ·∆Rn + γ · (∆XT

L ·HL,L ·∆XL

) ]
(15.9)

We set each derivative equal to zero. Note that the derivative of the ∆RT
n · ∆Rn term is zero since

there is no dependence on ∆XL. If we define the elements as follows:

eT
L ≡

∂∆XT
L

∂∆XL
and eL ≡ ∂∆XL

∂∆XL
(15.10)

and after simplification we obtain:

0 = eT
L ·
(
ST

L,n · Sn,L ·∆XL − ST
L,n ·∆Rn + γ ·HL,L ·∆XL

)
+
(
∆XT

L · ST
L,n · Sn,L · − (∆Rn)T · Sn,L + γ∆XT

L ·HL,L

)
· eL (15.11)

Note that the second term on the right hand side is simply the transpose of the first (see Eqn. A.35
and Eqn. A.36). Therefore, therefore, both terms must satisfy the same conditions for a non-trivial extrema.
Therefore,

(
ST

L,n · Sn,L + γ ·HL,L

) ·∆XL = ST
L,n ·∆Rn (15.12)

Then the solution is given as:

∆XL =
(
ST

L,n · Sn,L + γ ·HL,L

)−1 · ST
L,n ·∆Rn (15.13)
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The new temperature is given by

T i+1
L = T i

L + ∆XL (15.14)

and the whole process must be iterated since Sn,L is a function of temperature.

15.2 Discrepancy Principle

Jun Li (see Fig. 15.1) and Allen Huang (see Fig. 10.1) (1999) describe an approach where the value of γ in
Eqn. 15.13 can be optimized for an individual spectrum. The symbols used in the original paper have been
re-assigned to be consistent with this text. The translation is shown in Table 15.1.

Figure 15.1: Picture of Jun Li (Courtesy of Jun Li)

Table 15.1: Symbols used in Li & Huang (1999)
Li & Huang here description

n channel index
L atmospheric layer

Y m R̃n Observed radiances
F (X0) fn(X0) Radiance from Forward Model
F ′ SL,n Kernel function for channel n
E−1 Wn,n Inverse of obs-cal error covariance
X0 X0 Initial State of all parameters
X0 X0

L Retrieval First Guess State
X(γ) X(γ) Retrieved state

Using the new symbols we can write Eqn. 15.13 for a weighted retrieval as

X(γ) =
(
ST

L,n ·Wn,n · Sn,L + γ ·HL,L

)−1 · ST
L,n ·Wn,n ·

(
R̃n − f(X0)

)
(15.15)
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however, in their paper they only show retrievals where HL,L = I + L,L. To evaluate the quality of the
retrieved parameters, X(γ), as a function of the value of γ they compute a scalar quantity, G(γ) as follows

G(γ) =
(
fn(X(γ))− R̃n

)T

·Wn,n ·
(
fn(X(γ))− R̃n

)
−N (15.16)

where N is the number of channels used in the linear constrained retrieval. Note that G(γ) is similar to
a χ2 statistic that is offset by N . For low values of γ the retrieval allows maximum vertical structure and
the residuals should be quite small making G(X(γ → 0)) negative for under-determined situations (for over-
determined, where N > L this may not be true). For very large γ the retrieval is over damped and the
residuals should approach G(X0), which Li & Huang require to be a positive value. This requirement is
not necessarily true; however, it is reasonable that the initial guess creates residuals that are larger than the
instrument and forward model errors. The shape of G(γ) is shown in Fig. 15.2.

Figure 15.2: Figure 1 from Li & Huang 1999 showing the function G(γ) as a function of γ

If we assume that

G(X0) > 0 (15.17)

and G(X(γ)) is monotonically increasing with γ then we can find the condition where G(X(γ)) = 0. If we
start with an initial γ = γ0 then an improved γ would be

γ = γ0 −G(X(γ)) · ∂G(X(γ))
∂γ

∣∣∣∣
γ0

(15.18)

We can differentiate Eqn. 15.16 to obtain

∂G(γ)
∂γ

∣∣∣∣
γ0

= 2 · ∂X(γ)
∂γ

∣∣∣∣
γ0

· ST
L,n ·Wn,n ·

(
fn(X(γ0))− R̃n

)
(15.19)

and from Eqn. 15.15 we can compute the derivative of the state w.r.t. γ



Chapter 15: Linear Constrained Chris Barnet August 30, 2006 364

∂X(γ)
∂γ

∣∣∣∣
γ0

=
(
ST

L,n ·Wn,n · Sn,L + γ0 ·HL,L

)−2 · ST
L,n ·Wn,n ·

(
f(X0)− R̃n

)
(15.20)

Eqn. 15.20 can be substituted into Eqn. 15.19 and the result for into Eqn. 15.18 yields

γ = γ0 −
[(
fn(X)− R̃n

)T

·Wn,n ·
(
fn(X)− R̃n

)
−N

]
·
[
2 · ST

L,n ·Wn,n ·
(
fn(X(γ0))− R̃n

)]−1

·
[(
ST

L,n ·Wn,n · Sn,L + γ0 ·HL,L

)−2 · ST
L,n ·Wn,n ·

(
f(X0)− R̃n

)]−1

(15.21)
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Chapter 16

Twomey’s method of 1st and 2nd

Derivatives

Figure 16.1: Snapshot of Sean Twomey (courtesy of Jim Dugan)

We are minimizing an equation of the form

Rn = Sn,L ·XL + ε (16.1)

such that we minimize the effect of ε on our parameters XL. The norm of a vector �v is a scalar quantity and
is defined as
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||�v|| ≡
√
�vT · �v =

(
I∑

i=1

x(i)2
)

(16.2)

is minimized. In the case of our problem we can minimize a scaler quantity

||S ·X −R|| = ||ε|| = φ (16.3)

The constrained minimum is subject to a constraint such that the scalar quantity to be minimized is a
function of the result itself

φ = ||Sn,L ·XL −Rn||+ γ · ||XL|| (16.4)

If instead of minimizing ||XL||; however, we instead minimize a linear combination of XL, namely
||OL,L ·XL||, in general, will yield a scalar to be minimized of the form

φ = ||Sn,L ·XL −Rn||+ γ · ||OL,L ·XL|| (16.5)

The minimum in φ occurs when XL is given as

∆XL =
(
ST

L,n · Sn,L + γ ·OT
L,L ·OL,L

)−1 · ST
L,n ·∆Rn (16.6)

or if we define HL,L ≡ OT
L,L ·OL,L we can write

∆XL =
(
ST

L,n · Sn,L + γ ·HL,L

)−1 · ST
L,n ·∆Rn (16.7)

Therefore, once again, the solution to this system of equations will yield the form of Eqn. 15.13. If we set our
smoothing matrix to the identity matrix, HL,L = IL,L, then we obtain the linear constrained or minimum
variance solutions, namely

∆XL =
(
ST

L,n · Sn,L + γ · IL,L

)−1 · ST
L,n ·∆Rn (16.8)

16.1 First Derivative

The first derivative of the solution can be written as a matrix operator, OL,L ·XL, where OL,L is given by

O =




0 0 0 0 0 . . . 0
1 −1 0 0 0 . . . 0
0 1 −1 0 0 . . . 0
0 0 1 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . 0 1 −1 0 0
0 . . . 0 0 1 −1 0
0 . . . 0 0 0 1 −1




OL,L ·XL =




0
X1 −X2

X2 −X3

X3 −X4 . . .
XN−3 −XN−2

XN−2 −XN−1

XN−1 −XN




(16.9)

and we can build the quadratic measure of
∑

(XL−1 −XL)2 by computing q = XT
L · OT

L,L · OL,L · XL =
XT

L ·HL,L ·XL

H =




1 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 1




(16.10)



Chapter 16: Twomey’s Constraint Chris Barnet August 30, 2006 367

16.2 Second Derivative

Twomey derived a form where the second finite difference was minimized. This form is known as the Twomey-
Phillips solution. The form offers a smooth solution, that is, the change in the slope is least. The 2nd derivative
is written as an operator:

O =




0 0 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
0 0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . −1 2 −1 0 0
0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1




(16.11)

and H = OT ·O is given as

H =




1 −2 1 0 0 . . . 0
−2 5 −4 1 0 . . . 0
1 −4 6 −4 1 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . 1 −4 6 −4 1
0 . . . 0 1 −4 5 −2
0 . . . 0 0 1 −2 1




(16.12)

16.3 Third Derivative

Twomey derived a form where the third finite difference was minimized.

O =




0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
−1 −3 3 −1 0 . . . 0
0 −1 −3 3 −1 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . −1 3 −3 −1 0
0 . . . 0 −1 −3 3 −1




(16.13)

and H = OT ·O is given as

H =




1 −3 3 −1 0 0 . . . 0
−3 10 −12 6 −1 0 . . . 0
3 −12 19 −15 6 0 . . . 0
−1 6 −15 20 −15 6 . . . 0
. . . . . . . . . . . . . . . . . . . . . 0
0 . . . −1 6 −15 20 −15 6
0 . . . 0 6 −15 19 −12 3
0 . . . 0 −1 6 −12 10 −3
0 . . . 0 0 −1 3 −3 1




(16.14)

16.4 Difference from Mean

Another form is to minimize the solution from its own mean, that is q =
∑
L

(XL− < XL >)2 which can be

written
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OL,L =




L−1
L

−1
L

−1
L . . . −1

L
−1
L

−1
L−1

L
L−1

L
−1
L . . . −1

L
−1
L

−1
L−1

L
−1
L

L−1
L . . . −1

L
−1
L

−1
L

. . . . . . . . . . . . . . . . . . . . .
−1
L

−1
L

−1
L . . . L−1

L
−1
L

−1
L−1

L
−1
L

−1
L . . . −1

L
L−1

L
−1
L−1

L
−1
L

−1
L . . . −1

L
−1
L

L−1
L




(16.15)

In this form the diagonal elements of HL,L are given by

H(l, l) = (L− 1)L−2 + (1− L−1)2 = L−2
[
L− 1 + (L− 1)2

]
= L−2(L2 − L) = (1− L−1) (16.16)

and the off-diagonal elements are given by

H(l,m) = (L− 2)L−2 − 2(1− L−1)L−1 = L−2 [L− 2− 2(L− 1)] = −L−1 (16.17)

so that HL,L = OL,L. This matrix has the interesting property that it is equal to itself squared. It is equal
to a singular matrix with L−1 in every position plus the identity matrix.
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Chapter 17

Other Methods of Constraint

17.1 Relaxation

This method can be utilized for a large class of problems. See Press et al., 1986 for a general discussion of
the methodology. An example of a numerical solution to a thermal diffusion problem, in which the analytic
solution is given in “Mathematical Methods in the Physical Sciences” by Mary Boas, (Wiley, 1966, pg. 631),
is discussed in the Chapter 9 of the PHYS 640 notes. Another example of using relaxation to solve a radiative
dynamic model is also given in Barnet 1990 and Barnet et al. 1992.

Mous Chahine was the first to apply the relaxation technique to the Fredholm integral equation (Chahine,
1972, Chahine, 1977).

17.2 Using Adiabatic Lapse Rate as a Constraint

In Peckham and Grippa (2000) the authors state Since radiances are insensitive to small-scale structures
in the profiles, precautions must be taken to avoid instability of the retrieval which may show excessive
sensitivity to the measurement noise. Prior statistical knowledge may be combined with the measurement to
obtain a stable solution. This is the preferred method for the assimilation of remote-sensing measurements
into operational general-circulation models (GCM’s)used for forecasting; prior data being readily available
from the model. However, on many occasions it is desirable to retrieve profiles independently from a GCM.
In this case, the choice of prior statistical information is a problem. Seasonal means and covariances may
be used, or artificial covariance matrices may be constructed. Often the covariance matrix is assumed to be
diagonal to avoid imposing possibly false corrections onto the temperature profile. None of these sources of
prior statistical information could be considered to have a validity equivalent to that of the measurements.

They define q as the difference from the actual temperature difference , T2 − T1, and a value consistent
with a temperature gradient, Γ ≡ −1

2 κ(T2 − T1), between the two levels

q = T2 − T1 =
1
2
κh(T2 − T1) (17.1)

where κ = (cp − cv)/cp. Assume q ≥ 0 and the values have a truncated normal distribution P (q) ∝
exp(−q2/(2q20)) so that the temperatures have a probability distribution of

P (T1, T2) � exp
[
−
(
T2 − T1 +

1
2
κh(T2 + T1)

)2

/(2q2o)

]
(17.2)

If we introduce temperatures on a log pressure quadrature then h = loge(pL/pL+1) and assuming inde-
pendent probabilities for each temperature layer
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P (T1, T2, . . . , TN ) � exp
[
−1
2q2o

NL−1∑
L=1

(
TL+1 − TL +

1
2
κh(TL+1 + TL)

)2
]

(17.3)

For Rn = Kn,L · xL + εn, the cost function for minimization is

Q = ∆R + λ∆x (17.4)

where

∆R = (Kn,L · xL −Rn)′ ·N−1
n,n · (Kn,L · xL −Rn) (17.5)

∆x is the regularization function, given by

∆x = (xL − x̂L) ·HL,L · (xL − x̂L) (17.6)

The regularization term, ∆x, is proportional to − loge(T1, T2, . . . , TN ) so absorbing q0 into the regular-
ization constant λ:

∆x =
N−1∑
i=1

(
TL+1 − TL +

1
2
κh(TL+1 + TL)

)2

(17.7)

H =




(
2− 1

2κh
)2

β 0 0 . . . 0 0
β α β 0 . . . 0 0
0 β α β . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . α β

0 0 0 0 . . . β
(
2 + 1

2κh
)2




(17.8)

where, α = 2[1 + (1
2κh)

2] and β = −[1− ( 1
2κh)

2]
They also impose the constraints that

TL+1 − TL ≥ −1
2
κh (TL+1 + TL) (17.9)

xL − x̂L =
(
λ ·HL,L +K ′

L,n ·N−1
n,n ·Kn,L

)−1 ·K ′
n,L ·N−1

n,n · (Rn −Kn,L · x̂L) (17.10)

17.3 Humidity Constraints

Constraints have been used in the retrieval of atmospheric water vapor (Phalippou, 1996) as values should
not be negative and may be constrained to not exceed the saturation vapor levels.

17.4 L-curve Optimization

Hansen (1992) and Schimpf and Scheier(1997) discuss methods of regularization using “L-curve” optimization

17.5 Singular Value Decomposition Methods

Schimpf and Schreier (1997) discuss methods of regularization using.
The AIRS science team has adopted a similar approach that is based in singular value decomposition of

the signal-to-noise covariance. This is discussed in the AIRS algorithm notes (Chapter 21), the AIRS ATBD
(goto GSFC AIRS DAAC homepage), Susskind et al. (2003), Susskind et al. (1998).
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Chapter 18

Backus-Gilbert Smoothing Functions

The gap between theory and practice is bigger in practice than it is in theory. Anna Michalak

Figure 18.1: Picture of J. Freeman Gilbert, taken from an article in EOS 80 #25, June 22, 1999 when he
was awarded the AGU William Bowie medal of honor

The original papers by Backus & Gilbert [1967 to 1970] and Johnson & Gilbert [1972] described a
method using seismic waves to retrieve density of the Earth as a function of depth. Gilbert’s observations of
the 1970 Colombian earthquake and the moment tensor description of the seismic source revolutionized the
way earthquakes are analyzed. In the mid 1960’s he and George Backus collaborated on geophysical inversion
methods that found their way into many scientific and commercial applications, such as remote sounding for
oil. These methods were discussed in the atmospheric remote sounding context in Conrath [1972], Conrath
[1977] and Hanel et al. [1992].

The technique is still discussed widely (e.g., Minkoff and Symes 1997, Minkoff 1996, Rodgers 2000) and
is utilized in many new applications

For convenience the discuss on page 319 to 321 from Hanel et al. (1992) is reproduced here with the
following symbol definitions
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Figure 18.2: Snapshot of Chris Barnet, Barney Conrath, and Reta Beebe, vigorously hiking in the Organ
Mountains, (near Modoc mines) New Mexico, May 1990

Conrath Hanel
1972 1992 here description
i i n channel index
x z z vertical dimension
∆I ∆Ii ∆Rn Linearized measurement
Ki(x) Ki(z) Kn(z) Kernel function
∆T (x) f(z) f(z) Geophysical Perturbation

∆Rn =

∞∫
z=0

Kn(z) · f(z) · dz (18.1)

The measurements, ∆Rn, are proportional to certain averages of f(z) with the averaging defined with respect
to the radiative transfer kernels, Kn(z). We cannot expect to retrieval f(z) in detail, but only certain
properties of the profile can be estimated.

Linear combinations of ∆Rn’s are sought that more nearly represent the properties of f(z) than do
the averages over Kn(z) given by Eqn. 18.1. Let the estimated property of f(z) be expressed as a linear
combination of the observations (i.e., as a linear regression operator between spectral space and geophysical
space) as follows

f(z) =
N∑

n−1

an(z) ·∆Rn (18.2)

where the coefficients, an(z), depend on the specific retrieval algorithm. We can relate f(z) to f(z) by
substituting Eqn. 18.1 into Eqn. 18.2 to obtain



Chapter 18: Backus-Gilbert Chris Barnet August 30, 2006 374

f(z) =
N∑

n−1

an(z) ·
∞∫

z=0

Kn(z) · f(z) · dz (18.3)

f(z) =

∞∫
z=0

N∑
n−1

an(z) ·Kn(z′) · f(z′) · dz′ (18.4)

=

∞∫
z′=0

A(z, z′) · f(z′) · dz′ (18.5)

where A(z, z′) is the so-called averaging kernel given by

A(z, z′) =
N∑

n−1

an(z) ·Kn(z′) (18.6)

The extent to which f(z) is useful depends on the properties of A(z, z′), such as its width relative to the
individual Kn(z)’s or its shape.

To pursue this line of reasoning further, it is necessary to define some measure of the width or shape of
A(z, z′). Two quadratic measures of interest are

Q1(z) =

∞∫
z′=0

[A(z, z′)− δ(z − z′)]2 · dz′ (18.7)

Q2(z) =

∞∫
z′=0

(z − z′)2 ·A2(z, z′) · dz′ (18.8)

By minimizing either of these quadratic forms, we can obtain a set of coefficients that provide the optimum
vertical resolution in the sense of the particular form chosen. However, in the presence of measurement noise,
the resulting retrievals would be unsatisfactory because of error propagation, and we must take the effects of
noise explicitly into account.

The mean location of the peak in the function can be given by

z̄ =

Z∫
z′=0

(z − z′) ·A(z, z′)dz′

Z∫
z′=0

A(z, z′)dz′
(18.9)

The formal root-sum-square linear propagation of random measurement errors into f(z) can be written

σ2
f

=
N∑

n=1

a2
n · σ2(R) (18.10)

where the errors are assumed to be uncorrelated between frequencies with a variance independent of fre-
quency given by σ2(R). Instead of minimizing one of the quadratic forms, Q(z), we must minimize a linear
combination of the form

q(z) = w ·Q(z) + (1− w) · r · σ2(R) (18.11)

where, w is the relative weight and r is a scaling factor that insures that both terms have the same dimensions.
By varying w between zero and unity the emphasis can be shifted from minimizing the spread (the narrowness
of the averaging kernel) to minimization of the error propagation. If we choose Q(z) = Q1(z) and minimize
q(z), then f(z) takes the form
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f(z) = KT (z)


 ∞∫
z′=0

K(z′) ·KT (z′) · dz′ + 1 + w

w
· r · σ2(R) · In



−1

∆Rn (18.12)

where K(z) and ∆R are column matrices whose elements are given by Kn(z) and ∆Rn respectively, and In
is the unit matrix. If we let

γ =
1− w
w
· r · σ2(R) (18.13)

Then Eqn. 18.12 is equivalent to the linear constrained formulation given by Eqn. 15.13. Thus, from the
Backus-Gilbert point of view, the constrained linear inversion discussed previously is that retrieval for which
the averaging kernel lies closest to a Dirac-delta function in the least squares sense, subject to the constraint
imposed by a limited set of measurements in the presence of measurement error.

Extensive use has been made of the form Q(z) = Q2(z) in Eqn. 18.11 with a measure of the width of
A(z, z′) defined as s(z) = 12 · Q2(z). The factor of 12 is included so that s(z) gives the correct width for
a rectangular function of unit area. Minimizing q(z), Eqn. 18.11, subject to the additional constraint that
A(z, z′) be “unimodular, i.e.,,

∞∫
z′=0

A(z, z′)dz′ = 1 (18.14)

yields

f(z) =
uT ·W−1(z) ·∆R
u2 ·W−1(z) · u (18.15)

where

Wn,m = (1− w) · r · σ(R) · δn,m + w

∞∫
z′=0

(z′ − z)2 ·Kn(z′) ·Km(z′z) · dz′ (18.16)

and

un =

∞∫
z′=0

Kn(z′) · dz′ (18.17)

The selection of w in Eqn. 18.15 is arbitrary and its choice involves a trade-off between maximization
of vertical resolution and minimization of measurement noise. In fact at each level for which f(z) is to be
calculated, a trade-off curve can be constructed expressing the relationship between σ2(R) and the vertical
resolution a measured by s(z).

18.1 Vertical Resolution

See Conrath (1972)
The trade-off curve usually has an “elbow” shape, as shown in Fig. 18.5. As vertical resolution is

degraded the noise propagation decreases sharply until a point is reached beyond which little improvement
is realized. While the Backus-Gilbert formulation explicitly considers the trade-off between resolution and
error propagation, this general property of profile retrieval is apparent in the filtering in linear-constrained
approaches. As vertical resolution is increased by the addition of higher spatial frequency components to the
solution, these components amplify the noise.
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Figure 18.3: Snapshot of Barney Conrath pondering a different kind of vertical trade-off, May 1990

Figure 18.4: The vertical trade-off “elbow” seen more clearly, May 1990
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Figure 18.5: Example Backus-Gilbert trade-off for a layer at 49 mb (from Conrath, 1972)

Figure 18.6: Example averaging kernels with in trade-off figure above (from Conrath, 1972)



Chapter 18: Backus-Gilbert Chris Barnet August 30, 2006 378

Figure 18.7: A set of Backus-Gilbert weighting functions for the 15 micron carbon dioxide band (from
Conrath, 1972)



Chapter 18: Backus-Gilbert Chris Barnet August 30, 2006 379
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Chapter 19

Maximum Likelihood and Maximum a
posteriori

Truth comes out of error more easily than out of confusion. Francis Bacon

Figure 19.1: Clive Rodgers at the Blenheim charity run (Oct. 20, 2002, http://www-atm.physics.ox.ac.uk/
running)

I have altered Rodger’s notation to be consistent with these notes. These notes are taken from Rodgers
[2000] and Rodgers [1976]. Page numbers refer to pages in Rodgers [2000]. The symbolic transformation and
definition of the symbols are given it the following table:
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Rodgers My
Notation Notation Description
y Rn measured radiances
x XL geophysical state at iteration i
f(x) Rn(XL) the forward computation of radiance
xa X0

L a-priori state
K Sn,L Kernel functions, i.e., derivatives of R w.r.t. X
Sε Nn,n covariance of the error in Rn

Sa CL,L covariance of Xi
L −X0

L

The maximum likelihood method is also known as the maximum probability, and maximum a posteriori
(MAP) method. The solution is the most probable value of the atmospheric state, XL, given the measure-
ments, Rn, that is to maximize the conditional probability of X given R:

P (X|R) = maximum (19.1)

where P (X|R) is the conditional probability density function (PDF) that of X given R, meaning that
P (X|R)dX is the probability that R lies in (R,R+ δR) when X has a certain value. The expected value of
X then is the mean value

X̂ =
∫
X · P (X|R)dX (19.2)

Gaussian statistics are a good approximation for the errors in real measurements, so P (R|X) (the PDF
of R given X lies within (X,X + δX) can be expressed as

2 loge (P (R|X)) = (Rn − Sn,L ·XL)T ·N−1
n,n · (Rn − Sn,L ·XL) + c1 (19.3)

where c1 is a constant. Less realistic, but convenient, is to describe prior knowledge of X by a Gaussian
PDF:

2 loge (P (X)) =
(
XL −X0

L

)T · C−1
L,L ·

(
XL −X0

L

)
+ c2 (19.4)

where X0
L is the a priori value of XL and CL,L is the associated covariance matrix of the a-priori.

In Fig. 19.2 is taken from Rodgers [2000]. His caption and text read “This figure provides a geometric
illustration of the relationship between the prior state estimate, the measurement mapped into state space,
and the posterior estimate, for a three-dimensional state space and a two dimensional measurement space.
The large ellipsoid, centered on xa, is a contour of the prior pdf, outlining the region in which states consistent
with the measurement might lie. The cylinder is a contour of the pdf of the state given only the measurement,
where the axis of the ellipsoid is the set of states corresponding exactly to the measurement, and the cylinder
encloses the experimental error. The direct of the axis represents the null space. The small ellipsoid is a
contour of the posterior pdf. Note that the center of x̂ does not lie on the axis of the cylinder, i.e., the
expected value does not fit the measurements exactly.”

19.0.1 Bayesian Strategy

Bayes theorem is given by

P (x|y) =
P (y|x) · P (x)

P (y)
(19.5)

2 loge (P (X|R)) = (Rn − Sn,L ·XL)T ·N−1
n,n · (Rn − Sn,L ·XL)+

(
XL −X0

L

)T ·C−1
L,L ·

(
XL −X0

L

)
+ c3 (19.6)

The maximum a posteriori solutions have many different forms as summarized on page 67 of Rodgers
[2000]. The usual form of the equation is given in Rodgers [2000] Eqn. 2.30 on page 25 (also Eqn. 4.3 on
page 67).



Chapter 19: Maximum Likelihood Chris Barnet August 30, 2006 382

XL =
[
ST

L,n ·N−1
n,n · Sn,L + C−1

L,L

]−1

·
(
ST

L,n ·N−1
n,n ·Rn + C−1

L,L ·X0
L

)
(19.7)

If we multiply both sides by CL,L ·
[
ST

L,n ·N−1
n,n · Sn,L + C−1

L,L

]
and simplify we obtain Eqn. 4.4 on page

67

XL =
[
CL,L · ST

L,n ·N−1
n,n · Sn,L + IL,L

]−1 · (CL,L · ST
L,n ·N−1

n,n ·Rn +X0
L

)
(19.8)

Another form was discussed in Section 8.12.2. We can also take and add zero to the right hand argument
in Eqn. 19.7 in the form of +ST

L,n ·N−1
n,n ·ST

n,L ·X0
L and −ST

L,n ·N−1
n,n ·ST

n,L ·X0
L. After simplifying the argument

we obtain the form as given in Eqn. 2.30 on page 25 of Rodgers [2000] (also Eqn. 4.5 on page 67))

XL = X0
L +

[
ST

L,n ·N−1
n,n · Sn,L + C−1

L,L

]−1

· ST
L,n ·N−1

n,n ·
(
Rn − Sn,L ·X0

L

)
(19.9)

Another form was discussed in Section 8.12.3. We can utilize the identity

ST
L,n ·N−1

n,n ·
(
Nn,n + Sn,L · CL,L · ST

L,n

) ≡ (C−1
L,L + ST

L,n ·N−1
n,n · Sn,L

)
· CL,L · ST

L,n (19.10)

which can easily be shown to be true by expanding the terms

ST
L,n + ST

L,n ·N−1
n,n · Sn,L · CL,L · ST

L,n ≡ ST
L,n + +ST

L,n ·N−1
n,n · Sn,L · CL,L · ST

L,n (19.11)

Eqn. 19.10 can easily be rewritten as(
C−1

L,L + ST
L,n ·N−1

n,n · Sn,L

)−1

· ST
L,n ·N−1

n,n· ≡ CL,L · ST
L,n ·

(
Nn,n + Sn,L · CL,L · ST

L,n

)−1
(19.12)

Figure 19.2: Illustration of maximum posteriori estimate, taken from Rodgers [2000], Fig. 2.4, page 25
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which results in the another form of the equation as given in Eqn. 2.31 on page 25 of Rodgers [2000] (also
Eqn. 4.5 on page 67).

XL = X0
L + CL,L · ST

L,n ·
(
Sn,L · CL,L · ST

L,n +Nn,n

)−1 · (Rn − Sn,L ·X0
L

)
(19.13)

19.1 Iterative Formulation

The iterative form of these equations can be derived by modification of the cost function to minimize Rn −
f(XL) instead of Rn − Sn,L ·XL. The same forms of the equations emerge as summarized in Rodgers [2000]
Eqn. 5.8, 5.9, and 5.10 on page 85.

Xi+1
L = Xi

L +
(
C−1

L,L + ST
L,n ·N−1

n,nSn,L

)−1

·[
ST

L,n ·N−1
n,n · (Rn −Rn(XL))− C−1

L,L

(
Xi

L −X0
L

)]
(19.14)

= X0
L +

(
C−1

L,L + ST
L,n ·N−1

n,n · Sn,L

)−1

· ST
L,n ·N−1

n,n ·[
Rn −Rn(XL) + Sn,L

(
Xi

L −X0
L

)]
(19.15)

= X0
L + CL,L · ST

L,n ·
(
Sn,L · CL,L · ST

L,n +Nn,n

)−1 ·[
Rn −Rn(XL) + Sn,L

(
Xi

L −X0
L

)]
(19.16)

In Austin and Graeme [2001] there is a good application and discussion of the Rodgers approach when
both instrument and model errors are present.

Austin &
Graeme My
Notation Notation Description
y Rn measured radiances
x XL geophysical state at iteration i
xa X0

L a-priori state
xb Xk geophysical parameters held constant
K Sn,L Kernel functions, i.e., derivatives of R w.r.t. X
Kb Sn,k Kernel functions, i.e., derivatives of R w.r.t. Xb

Sε Nn,n covariance of the error in Rn

Sa CL,L covariance of Xi
L −X0

L

Sb δXkδX
T
k error covariance of Xk

The error in model parameters held constant in a given retrieval are given by δXk and Sn,k is the
derivative of the forward model for these parameters. The total error in Rn −Rn(XL,Xk) is then given by

Nn,n = Sn,k · δxkδx
T
k · ST

n,k + NE∆Nn ·NE∆NT
n (19.17)

Xi+1
L =

(
C−1

L,L +
(
Si

L,n

)T ·N−1
n,n · Si

n,L

)−1

·
[
C−1

L,L ·X0
L +

(
Si

L,n

)T ·N−1
n,n

(
Rn −Rn(Xi

L) + Si
n,L ·Xi

L

)]
(19.18)
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Chapter 20

Optimal Estimation Methods

“It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of the subject
admits and not to seek exactness where only an approximation is possible.” Aristotle

This section is taken from John Eyre’s publications in 1989a and 1990 where he discussed optimal
methods of solving for a mathematically ill-posed problem. In general, the “computationally” efficient forms
of the equations given are for cases where the number of measurementsN is less than the number of parameters
to be solved for L. Atmospheric remote sounding is such a problem due to the fact that an infinite number
of profiles are consistent with the measurements and, therefore, only an optimal solution which utilizes prior
information or constraints can be solved for.

Since prior information is usually a climatology or weather forecast model a more pertinent question
to ask is: to what extent do the measurements improve on the prior knowledge. These papers studied
the information content, which is defined as the reduction in the entropy of appropriate probability density
functions.

J(X) =
1
2
· (XL −Xb

L

)T · C−1
L,L ·

(
XL −Xb

L

)
+

1
2
· (Rn − f(XL, n))T · (En,n + Fn,n)−1 · (Rn − f(XL, n)) (20.1)

where,
Rn are the measurements
Xb

L background (first guess) profile
CL,L covariance of the background error
f(XL, n) computed model of the measurement error
En,n expected covariance of the measurement error
Fn,n expected covariance of the model, f(XL, n)

J ′(X) =
∂J(X)
∂X

= C−1
L,L ·

(
XL −Xb

L

)−KT
L,n(X) · (En,n + Fn,n)−1 · (Rn − f(XL, n)) (20.2)

where K(X)n,L is the gradient of the forward model, that is it contains the partial derivatives of Rn with
respect to XL. The optimal solution is found be either minimizing J(X) or by solving J ′(x) = 0.

Differentiation of J ′′(X) gives the error covariance of the solution:

J ′′(X) � S(X)−1 = C−1
L,L +K(X)n,L · (En,n + Fn,n)−1 ·K(X)n,L (20.3)

if terms with K ′(X) are neglected. When n < L matrix manipulation will yield
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S(X) = CL,L − CL,L ·KT (X)n,L · [K(X)n,L · CL,L ·K(X)n,L + En,n + Fn,n]−1 ·KT (X)n,L · CL,L (20.4)

which in the linear case is exactly the form of Rodgers (1976).
For the linear problem, K is independent of X and we may write

f(X,n) = f(Xb, n) +Kn,L ·
(
XL −Xb

L

)
(20.5)

In the weakly non-linear case where K(X) can be approximated by K(Xb) we find an analytic solution

XL = Xb
L +

[
C−1

L,L +KT
L,n · (En,n + Fn,n)−1 ·Kn,L

]−1

·KT
L,n · (En,n + Fn,n)−1 · (Rn − f(XL, n)) (20.6)

Matrix manipulation gives an equivalent formula which is computationally more efficient

XL = Xb
L + CL,L ·KT

L,n ·
[
Kn,L · CL,L ·KT

L,n + (En,n + Fn,n]−1
]−1

· (Rn − f(XL, n)) (20.7)

For the non-linear case, that is K(X) changes rapidly for some values of X the solution is given by
Newtonian iteration

Xi
L = Xi

L −
[
J ′′(Xi

L)
]−1 · J ′(Xi

N ) (20.8)

where [J ′′(X)]−1 is given by Eqn. 20.4. Therefore, a computationally efficient form is given by

Xi
L = Xi

L −
(
Xb

L −Xi
L

)
+W i

L,n ·
(
Rn − f(Xi

L, n)
)−Ki

n,L ·
(
Xb

L −Xi
L

)
(20.9)

where,

W i
L,n = CL,L ·KT

L,n ·
[
Kn,L · CL,L ·KT

L,n + (En,n + Fn,n)
]−1

(20.10)
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Chapter 21

AIRS Science Team Physical
Algorithm

It’s not the things you don’t know that get you into trouble, it’s the things you know for sure that just ain’t
so. Mark Twain

Table 21.1: definition of symbols used in AIRS science team retrieval algorithm
symbol description
j function index for each function used in retrieval
k transformed function index
L geophysical state index
s step index
i iteration number
Xs,i

L geophysical state (T (p), q(p), O3(p), ε(n), . . .) at step s and iteration i
Xs,i

L,g sub-set of Xs,i
L for a group of L’s (e.g. T (p))

δXs,i
L,g error estimate in geophysical group

δXN
L,g null error estimate in geophysical group

δX̂s,i
L,g δXs,i

L,g − δXN
L,g

Rn

(
Xs,i

N

)
computed radiance (IR) from the geophysical state

Θn

(
Xs,i

L

)
computed brightness temperature (µW) from the geophysical state

∆Θs,i
n observed minus computed effective brightness temperature, (O-C)

Ψs,i
n background radiance (due to previous iteration’s damping)

Es,i
n,g computational error due to uncertainty in geophysical parameter Xs,i

L,g

Cs
n,n′ error covariance of Rn

(
Xs,i

N

)
(
Ns

n,n

)−1 inverse of error covariance in O-C
∆Âs

j perturbation function scale size
F s

L,j perturbation function j (trapezoids, triangles, etc.)
Ss,i

n,j sensitivity to scaled perturbation function ∆XL,j = F s
L,j ⊗∆Âs

j

Us,i
j,k eigenvectors of [

(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j ]
Gs,i

L,k transformed geophysical perturbation function, (FL,j ⊗∆Âs
j) · Us,i

j,k

Λs,i
k,k eigenvalue matrix of [

(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j ]
λs,i

k eigenvalues of Λs,i
k,k
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Table 21.2: definition of symbols used in retrieval algorithm (continued)
symbol description
λs

c empirical threshold for λs,i
k

∆λs,i
k damping of eigenvector

φs,i
k fraction of transformed parameter solved for
φs,i

j,j′ fraction of geophysical parameter solved for
φs,i

L fraction of geophysical state solved for
∆As,i+1

j (0) retrieved change in parameter (w/o damping)
∆As,i+1

j retrieved change in parameter (with damping)
∆Ãs,i+1

j retrieved change (w/ damping and background term)
δAs,i+1

j error in ∆As,i+1
j (w/o damping)

δÃs,i+1
j error in ∆Ãs,i+1

j (with damping and background term)
δBs

max empirical damping parameter for step s
∆Bs,i+1

k (0) retrieved change in transformed parameter (w/o damping)
∆Bs,i+1

k retrieved change in transformed parameter (with damping)
∆B̃s,i+1

k retrieved change (w/ damping and background term)
δBs,i+1

k error in ∆Bs,i+1
k (0) (w/o damping)

δB̃s,i+1
k error in ∆B̃s,i+1

k (with damping)

Table 21.3: Variable names used in the program src/retreig1.F
Ss,i

n,j partder(n,j)(
Ns

n,n

)−1 chwgt(n,n)
λs,i

k lambda(k)
Us,i

j,k Ujk(j,j)
∆λs,i

k delt(k)
λs,i

k + ∆λs,i
k d3(k)

φs,i
k phi(k)

∆B̃s,i+1
k coef(k)

∆Bs,i+1
k coef b(k)

∆Bs,i+1
k (0) phi(k)*coef b(k)

δBs,i+1
k dBn(k)

δBs,i+1
k · (δBT

k

)s,i noisey(k)
∆Ãs,i+1

k fcoef(j)
Ψs,i+1

n diff b(n)

21.1 Overview of the methodology

• Retrieval methodology must be able to handle cloud cleared radiances (CCR’s)

– Random noise amplification, 1
3 ≤ A <≈ 3

– Large spectrally correlated component

– Statistical a-priori difficult to implement

• Retrieval should have minimal sensitivity to first guess.
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Figure 21.1: The developers of the AIRS science team physical algorithm in summer of 2000. From left to
right, Lena Iredell, Jeff Whiting, Francesca Palik (summer student, CO2), Chris Barnet, John Blaisdell, and
Joel Susskind

– Maximize contribution from instrument radiances.

– Maximize sensitivity to and understanding of climate signals

– Trade-off: model background states ⇒ to use or not to use.

• Retrieval should not artificially constrain problem.

– Minimize sensitivity to incorrect statistics, e.g., in frontal zones avoid statistical damping.

– Trade-off: Stability versus Impact

The cost function, discussed in Chapter 8.12, Eqn. 8.137, can be written using our symbols as

J =
(
fn

(
Xi

L

)− yn

)T · (Ns
n,n

)−1 · (fn

(
Xi

L

)− yn

)
+

(
Xi

L −X1
L

)T ·HL,L ·
(
Xi

L −X1
L

)
(21.1)

• We can compute the error in cloud cleared observations, δR̂nδR̂n very well.

• We can estimate errors in the forward model. For parameters held constant, Xb, the obs-calc error
covariance is

Nn,n′ = Kn,b · δXbδX
T
b′ ·KT

b′n′ + δR̂nδR̂n (21.2)

Note that we will use an approximation for δXbδX
T
b′ , as discussed in Section 21.4

• a-priori information enters the system through statistical estimates of δXbδX
T
b′

– In the sense of estimates of errors in X1
L

– In the sense of null space errors, the minimum allowed value of δXbδX
T
b′

• But, we also compute the formal errors of the solution,
(
δXLδX

T
L

)s for each retrieval step = s (details
in Section 21.9 of rs notes.pdf).
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• (δXLδX
T
L

)s from step = s becomes the
(
δXbδX

T
b

)s+1 in step = s + 1, e.g., we solve for T (p) and
δT (p)δT (p)T and then use that error covariance when we solve for q(p), O3(p), etc., in later steps.

• Therefore, an improvement in temperature errors, for example, can be used to improve our moisture
retrieval (vice a versa).

• This formulation also brings spectral correlation (i.e., a priori knowledge via the forward calculation)
into the solution via Kn,b(Xi

L) on a case-by-case basis.

– Spectral correlation is a function of other state parameters. For example, temperature lapse rate
changes sensitivity of all the composition derivatives.

– N equations of yn changed into N new equations: Nn,n′ · yn′ .

– This is a powerful concept that when used properly

∗ allows separation of mixed signals, e.g., T (p) and CO2

∗ minimizes sensitivity to biases, e.g., surface effects (Tskin, Psurf , emissivity) in T (p) retrieval.

• We can compute H from information content of (KTN−1K) by singular value decomposition (SVD,
a.k.a. empirical orthogonal functions (EOF’s) see Section 21.3, rs notes.pdf)

Λi
k,k ≡ UT i

k,L

[
KT i

L,n ·
(
Ns

n,n

)−1 ·Ki
n,L

]
· U i

L,k· (21.3)

• Λi
k,k is diagonal with elements equal to λk

• When λi
k � 1 the terms are well determined. Ki

n,L · U i
L,k are new Jacobians with very high signal to

noise: H = 0

• When λi
k → 0 the observations have no influence on the solution: H →∞ and components of Xi+1

L →
X1

L

• When λi
k is small and significant we add a ∆λi

k (details in Section 21.4 of rs notes.pdf) which is
equivalent (see Section 21.8, rs notes.pdf) to adding a case dependent Hi given by

Hs,i
L,L′ = U i

L,k ·∆Λi
k,k · UT i

k,L (21.4)

• SVD determines the optimal fraction of the a priori information to use..

• We think this is more robust than using ensemble statistics of I cases to compute a static a priori
covariance Sa ≡ δXL,iδX

T
i,L

21.2 Defining the retrieval steps

The atmospheric state, Xs
L, and the error estimate of that state, δXs

L, are used to minimize the residuals in
observed minus computed radiances in each retrieval step=s.

The current AIRS/AMSU-A/HSB retrieval system is a modular set of retrieval steps. Each retrieval step
solves for certain parameters while holding all others constant. The geophysical state of the clear atmosphere,
Xs,i

L , at a given retrieval step, s, and iteration, i, is given in Table 21.4.
The steps within the current AIRS science team algorithm are given in Table 21.5. Each step solves for

specific geophysical parameters while holding others constant. The parameters considered as error sources
in the error covariance matrix (discussed in section 21.4) are shown in the table. The AMSU-B steps are
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Table 21.4: Definition of the geophysical state, Xs,i
L , in the AIRS science team physical algorithm

T (p) vertical temperature profile
q(p) vertical water vapor profile (7.7 g/kg @ surface)
L(p) vertical liquid water profile
O3(p) vertical ozone profile (0.4 ppmv, 8ppmv @ 6 mb))
Ts surface temperature
ε(ν) spectral surface emissivity
ρ�(ν) spectral surface reflectivity of solar radiation
CO2 total column carbon dioxide (363 ppmv)
CH4(p) methane profile (1.65 ppmv)
CO(p) carbon monoxide profile (0.11 ppmv)
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Figure 21.2: Illustration of a retrieval system with cloud clearing.

removed after HSB failed in Feb. 2003. Some parameters are not accurately known and, therefore, they are
only considered on the diagonal of the error covariance matrix. These are shown with a dagger symbol, †.

Each step uses its own subset of channels. If the error covariance matrix is large for a given channel
or it has large spectroscopic uncertainties then it is permanently removed from the computation. This has
obvious improvements for execution time and it also improves results, since error estimates and damping are
the least accurate components of the retrieval process.

The clear column radiance is calculated from the NF FOV’s using Eqn. 7.44 in Chapter 7

Rs
n,CCR = Rn +

NF∑
j=1

(
Rn −Rn,NF +1−j

) · η̃s,i
j (21.5)

It is possible for the cloud cleared radiance observations to be close to zero or even negative due to instru-
mental noise and cloud clearing errors. Therefore, we never attempt to compute a clear column brightness
temperature from these radiances.

The retrieval algorithm minimizes the weighted difference between the clear column radiance observa-
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Table 21.5: Retrieval Steps in AIRS Science Team v5.0 Algorithm (see Table 21.12 for function definitions)
solve step computational error sources channels used

s for: name in error covariance AIRS AMSU HSB
1 T (p), ε(ν), Ts MIT q(p), L(p) 12
2 q(p), L(p) MIT T †(p), Ts, ε(ν), ρ�(ν) 3
3 T (p), ε(50.3), Ts AMSU(Ts) q(p), L(p) 11
4 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
5 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
6 T (p), q(p), O3(p) RT NOAA 1680
7 Ts, ε(ν), ρ�(ν) RT NOAA 1680
8 T (p), ε(50.3), Ts AMSU(Ts) Rccr(ν), q(p), L(p) 11
9 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
10 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
11 Ts, ε(ν).ρ�(ν), q SURFACE T †(p) 25
12 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 108 7

ε(ν), ρ�(ν), CO2

13 q(p) WATER Rccr(ν), T †(p), L(p), Ts, 44 3
εmw(f), ρ�(ν), CH4(p)

14 O3(p) OZONE Rccr(ν), q(p), Ts, ε(ν) 34
15 ((T (p), ε(50.3))) AMSU(RJ) Rccr(ν), q(p), L(p), Ts 11
16 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
17 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
18 Ts, ε(ν), ρ�(ν) SURFACE Rccr(ν), T †(p), q†(p) 25
19 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 124 7

ε(ν), ρ�(ν), CO2

20 CO(p) CO Rccr(ν), T (p), q(p), Ts 36
21 CH4(p) CH4 Rccr(ν), T (p), q(p), Ts 71
22 CO2 CO2 Rccr(ν), T (p), q(p), Ts 70

O3, ρ�(ν)
23 HNO3(p) HNO3 Rccr(ν), T (p), q(p), Ts 8
24 N2O(p) N2O Rccr(ν), T (p), q(p), Ts 52
25 SO2(p) SO2 Rccr(ν), T (p), q(p), Ts 63

† indicated that off-diagonal elements are not used

tions, Rs
n,CCR, and radiances computed using a forward model, Rn

(
Xs,i

N

)
, by varying the geophysical state,

Xs,i
L , where i is the iteration number within the current retrieval step, s. The forward model at iteration

i = 1 uses the previous iteration’s retrieved geophysical state, Xs,i
L . For s = 1, i = 1, X1,1

L comes from a first
guess (climatology) and for s > 1, i = 1 the retrieval uses the result from the last iteration, I + 1, from the
previous step as a first guess, Xs,1

L = Xs−1,I+1
L .

For multi-spectral retrievals the radiances can vary many orders of magnitude over the spectral regions
(e.g., microwave, long-wave infrared, and short-wave infrared). To maintain numerical precision it is desir-
able to normalize the “obs-calc” (O-C) as discussed in Section 1.5.7. We would like to mimic a brightness
temperature difference and we can approximate this by

For infrared channels we compute O-C as given by Eqn. 8.111 given by

∆Θs,i
n ≡

(
Rs

n,CCR −Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.6)

while for microwave channels, where the data is given in brightness temperature, we compute a brightness
temperature difference
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∆Θs,i
n ≡

(
Θn,CCR −Θn

(
Xs,i

L

))
(21.7)

where Θn,CCR is either the observed AMSU brightness temperatures or the average of the 9 HSB brightness
temperatures within the AMSU field of regard.

21.3 Specification of Geophysical Functions

A change to a group of the geophysical state are represented by a geophysical perturbation parameters, ∆As,i
j ,

and an associated perturbation function, F s
L,j . This is the generalized sensitivity matrix discussed in Section

8.11. For vertical profiles, such as T (p), q(p), O3(p), the perturbation function, F s
L,j = F s

j (p), is a trapezoid
(with dimensionless maximum value of 1.0) covering a vertical range of layers. For spectral parameters such
as ε(n) and ρ(n), F s

L,j = F s
j (ν) is a wedge or triangle covering a range of frequencies with a dimensionless

peak value of 1.0. For surface temperature and microwave emissivity F s
L,j is a value equal to unity. These

are summarized in Table 21.6.

Table 21.6: Scale size of perturbation functions in v5.0
retrieval ∆Âs

j

step Ts ε(ν) ρ(ν) T (p) q(p) trace
RETAMSU 1K 1% 1K
RETSURF 3K 1% 0.5% 3K 20%
RETTMP 1K

RETWATR 10%
RETOZON 10%
RET CO 10%
RET CH4 2%
RET CO2 1%

RET HNO3 20%
RET N2O 5%
RET SO2 50%

• Temperature functions are additive vertical trapezoids.

T s,i+1(p) = T s,i(p) +
∑

j

F s
j (p) ·∆As,i+1

j (21.8)

T s,i+1
s = T s,i

s + F s
j ·∆As,i+1

j (21.9)

• Composition functions are multiplicative vertical trapezoids.

– Radiance kernel is ∝ exp(κ(Xs,i
L )),

– κ(Xs,i
L ), is the optical depth ∝ Xs,i

L .

– Therefore, composition variables are more linear in ln
(
Xs,i

L

)
– ∂ ln(Xs,i

L ) ∝ ∂Xs,i
L

Xs,i
L

which is a % change in Xs,i
L .

qs,i+1(p) = qs,i(p) ·

1 +

∑
j

F s
j (p) ·∆As,i+1

j


 (21.10)
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• Emissivity functions are additive spectral triangles.

εs,i+1(n) = εs,i(n) +
∑

j

F s
j (ν) ·∆As,i+1

j (21.11)

• A scaling parameter Âs
j is used to create dimensionless parameters and adjust scale between different

functional groups (e.g., when mixing T(p), q(p), and emissivity in one retrieval).

• The Jacobian, Ks,i
n,L, becomes a set of new derivatives, Ss,i

n,j , in which groups of parameters in L space
are grouped together in J space.

• Sub-sets (e.g., temperature) of vertical and spectral functions must sum to unity:
∑
j

(
F s

L,j

)
= 1 for a

group of functions.

We will write the entire geophysical state as a vector XL, with associated geophysical perturbation
functions ∆XL,j = F s

L,j ⊗∆Âs
j and perturbation parameters ∆As,i

j . The ⊗ symbol represents a scale factor
for F s

L,j and not a matrix multiply and is equivalent to an identity matrix multiplication, F s
L,j ⊗ ∆Âs

j ≡
F s

L,j ·Ij,j ·∆Âs
j . For vertical functions the index L will specify pressure intervals while for spectral parameters

the functions will represent frequency intervals and L will specify the channel numbers, n. For other functions,
such as skin temperature the function is a value that is, the index L is single valued, and there is only one
value of j.

Xs,i+1
L = Xs,i

L +
∑

j

(
F s

L,j ⊗∆Âs
j

)
·∆As,i+1

j (21.12)

Figure 21.3: An example of trapezoids used in the AIRS science team retrieval

In Fig. 21.3 an illustration of the bottom 10 “trapezoids” is shown for the 100 level model used in
the AIRS simulations. The retrieval uses a total of 23 trapezoids to approximate Nyquist vertical sampling.
The functions are shown in alternating solid and dashed lines to allow discrimination between the functions.
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F s
13(p) is at the top of the figure and F s

23(p) is at the bottom. The annotation shows the limits of each function
in the 100 layer pressure grid. For example, F s

13(p) is a trapezoid with the plateau from P (L = 47) = 125.6
mb to P (L = 51) =160.5 mb.

The sensitivity matrix, Ss,i
n,j , is calculated for each channel n and each geophysical parameter, denoted by

index j, to be solved for in the current retrieval step, s, and iteration, i. The sensitivity matrix is computed
for a pre-set perturbation functions, F s

L,j ⊗∆Âs
j as follows

• For additive functions the S-matrix is given by

for infrared channels

Ss,i
n,j ≡ ∆Âs

j ·
∂Rn

(
X + F s

L,j ·Aj

)
∂Aj

∣∣∣∣∣
Xs,i

L

·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.13)

�
(
Rn

(
Xs,i

L + F s
L,j ·∆Âs

j

)
−Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.14)

and for microwave channels

Ss,i
n,j � Θn

(
Xs,i

L + F s
L,j ·∆Âs

j

)
−Θn

(
Xs,i

L

)
(21.15)

• For multiplicative functions the S-matrix is given by

Ss,i
n,j ≡ ∆Âs

j ·
∂Rn

(
X · (1 + F s

L,j ·Aj

))
∂Aj

∣∣∣∣∣
Xs,i

L

·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.16)

�
(
Rn

(
Xs,i

L ·
(
1 + F s

L,j ·∆Âs
j

))
−Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.17)

and for microwave channels

Ss,i
n,j � Θn

(
Xs,i

L ·
(
1 + F s

L,j ·∆Âs
j

))
−Θn

(
Xs,i

L

)
(21.18)

• Analytic derivatives on the RT grid do not help our algorithm, δ function perturbations are sub-optimal
(Backus+Gilbert).

• Single sided finite difference is currently used, we will explore the benefit of double-sided and dynami-
cally scaled derivatives someday. This is not our biggest error source!!!

21.4 Retrieval Error Covariance Matrix

The error covariance matrix, Ns
n,n′ , is computed in the first iteration of every step and is the estimate of the

uncertainty in the observed minus computed effective brightness temperature difference, ∆Θs,i
n . It consists of
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Figure 21.4: The ozone S-matrix for selected channels near 9.6 µm. The ozone is perturbed by 35 trapezoids
with a flat facet equal to 5% to produce this figure. Taken from Sep. 6, 2002, granule 33, AMSU footprint
#17.

the clear column radiance error estimate, discussed earlier (Eqn. 7.67) and computation uncertainties in the
forward calculation of Rn

(
Xs,i

N

)
. The computational uncertainty is calculated for all geophysical parameters,

X, not modified by the retrieval and, therefore, assumed known in a given step of the retrieval process.
The radiance error estimate, Es,i

n,g, due to uncertainties in geophysical quantities is computed from error
estimates in geophysical groups Xs,i

L,g (e.g., an entire temperature profile). As with the sensitivity functions,
this can be thought of as an error estimate of a parameter, δAg, and an associated function, F s

g (L). The
partial derivatives are calculated from the current estimate of the geophysical state, Xs,i

L , and an estimate
of the uncertainty in each geophysical group to be held constant in this stage of the retrieval, δXs,i

L,g, and is
calculated by a finite difference

For infrared channels the error estimate is converted to effective brightness temperature units using

Es,i
n,g ≡ δAs,i

j ·
∂Rn

(
Xs,i

L

)
∂Aj

∣∣∣∣∣
Xs,i

L

·
(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)−1

(21.19)

�
(
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

))
·
(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)−1

(21.20)

and for microwave channels the computation is

Es,i
n,g � Θn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Θn

(
Xs,i

L

)
(21.21)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated with respect
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to other parameters (e.g., surface spectral emissivity error can be correlated with skin temperature). We use
Qg as a scaling to compensate for assumed anti-correlation in these error estimated. Currently we set Qg to
0.5 for T (p) and q(p) error estimates and 1.0 for all other error estimates.

Figure 21.5: Examples of radiance errors, En,g for some typical geophysical errors
.

The computational covariance matrix, Cs,i
n,n′ , is composed of a summation of all the radiance error

estimate for all geophysical parameters held constant during a retrieval

Cs,i
n,n′ ≡

∑
g

Es,i
n,g ·

(
ET

g,n

)s,i
(21.22)

The retrieval error covariance matrix is a combination of the cloud cleared radiance error covariance
(Eqn. 7.67) and the computational error covariance terms.

Ns,i
n,n′ = Cs

n,n′ +

[
δRs

n,CCR ·
(
δRs

n′,OBS

)T + δRU
n · δn,n′ · (δRU

n′
)T ]

(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)
·
(

∂Bν

∂T

∣∣∣∣
B−1

ν (Rn′ (Xs,i
L

))

) (21.23)

Where δRU
n is a small term for additional unknown sources of error which is presently computed from

δRU
n ≡ 0.1◦ ·


∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.24)

In retrieval code the cloud cleared radiance error estimates are computed in the routine noisecv.F and
the computation terms are computed and added to the noise covariance matrix in the individual retrieval
routines (e.g., rettmpc.F, retwatr.F, etc.)
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21.5 The retrieval of the geophysical state

The brightness temperature difference residuals can be written in terms of a linear Taylor expansion change
to the geophysical parameters, ∆As,i

j , which is dimensionless due to ∆Âs
j in Eqn. 21.13 or Eqn. 21.16. In any

given retrieval step, we separate the parameters we are solving for into the matrix Ss,i
n,j and the parameters

we are not solving for into the matrix Es,i
n,g. If we assume for the moment that the value of the parameters

we are not solving for are known, such that Es,i
n,g could be known we could write

∆Θs,i
n = Ss,i

n,j ·∆As,i+1
j +

∑
g

±Es,i
n,g (21.25)

But we do not know the sign of the errors in the parameters we are not solving for, if we did we could
eliminate that uncertainty. At best we only have an estimate for the covariance and spectral correlation
of these uncertainties, therefore,

∑
g
±Es,i

n,g enters into the error covariance matrix via Eqn. 21.22 and Eqn.

21.23 so that the radiance residuals, ∆Θs,i
n , can be related to the parameters we are solving for via

(
Ns

n,n

)−1
Ss,i

n,j ·∆As,i+1
j =

(
Ns

n,n

)−1 ∆Θs,i
n (21.26)(

ST
j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j ·∆As,i+1
j =

(
ST

j,n

)s,i (
Ns

n,n

)−1 ∆Θs,i
n (21.27)

The assumption that is implicit here is that properly weighted geophysical parameter errors,
(
Ns

n,n

)−1 ·∑
g
±Es,i

n,g, are uncorrelated with the parameters we are trying to solve for. That is, the properly weighted

equation is one that has the smallest standard deviation.
The change required to the parameters can be solved in a weighted least-squares sense. If there were no

damping then the solution would be given by

∆As,i+1
j (0) =

[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j

]−1

· (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.28)

however, this solution would be highly unstable, given the under-determined nature of atmospheric retrievals.
As shown in Section 7.2, the adjustment to the parameters is found by solving for the eigenvalues, λs,i

k , and
eigenvector transformation matrix, Us,i

j,k, of
(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j , such that

Λs,i
k,k ≡

(
UT

k,j

)s,i (
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,jU
s,i
j,k (21.29)

See Press et. al 1986, pgs. 350-363 for FORTRAN routines to compute λs,i
k and Us,i

j,k. The 2-d matrix
Λs,i

k,k has only diagonal elements equal to λs,i
k . The transformation matrix, Us,i

j,k, can be thought of as a
transformed sensitivity matrix given by Ss,i

n,j · Us,i
j,k. At this point in the derivation we have not changed

anything except how we are computing the inverse. Note that when computing
[
Λs,i

k,k

]−1

any components of

λk < (0.05)2 · λs
c are set to zero, that is we remove the singular values. When λk is approaching zero both

the numerator and denominator are tending toward zero. Therefore, setting those components of ∆As,i+1
k (0)

to zero is most logical.

∆As,i+1
j (0) = Us,i

j,k ·
1
λs,i

k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.30)

We can utilize these new optimal functions to compute a change made in transformed parameter space,
is given by ∆Bs,i+1

k (0). Solving Eqn. 21.37
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∆Θs,i
n = Ss,i

n,j · Us,i
j,k ·∆Bs,i+1

k (0) (21.31)(
Ns

n,n

)−1 ·∆Θs,i
n =

(
Ns

n,n

)−1 · Ss,i
n,j · Us,i

j,k ·∆Bs,i+1
k (0) (21.32)(

UT
k,j · ST

j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n =

(
UT

k,j · ST
j,n

)s,i · (Ns
n,n

)−1 · Ss,i
n,j · Us,i

j,k ·∆Bs,i+1
k (0) (21.33)(

UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n = Λs,i

k,k ·∆Bs,i+1
k (0) (21.34)

∆Bs,i+1
k (0) =

[
Λs,i

k,k

]−1

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.35)

∆Bs,i+1
k (0) =

1
λs,i

k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.36)

Again, note that when computing
[
Λs,i

k,k

]−1

any values of ∆Bs,i+1
k (0) are set to zero when λk < (0.05)2 · λs

c.
When λk is approaching zero both the numerator and denominator are tending toward zero, therefore, setting
∆Bs,i+1

k (0) to zero is most logical.
And we note that the transformed parameters are related to the original parameters by the eigenvectors.

∆Θs,i
n = Ss,i

n,j ·∆As,i+1
j = Ss,i

n,j · Us,i
j,k ·∆Bs,i+1

k (21.37)

Eqn. 21.37, that is, that ∆As,i+1
j = Us,i

j,k ·∆Bs,i+1
k , is also a statement that the original functions Eqn.

21.12 have been transformed to new optimal functions

Xs,i+1
L = Xs,i

L +
∑

j

(
F s

L,j ⊗∆Âs
j

)
·∆As,i+1

j =
∑

j

(
F s

L,j ⊗∆Âs
j

)
· Us,i

j,k ·∆Bs,i+1
j (21.38)

It is illustrative to visualize the transformed functions, defined by

Gs,i
L,k ≡

(
F s

L,j ⊗∆Âs
j

)
· Us,i

j,k (21.39)

Since ∆Âs
j is the same value for all vertical functions in a geophysical group we will show F s

L,j ·Us,i
j,k in Fig. 21.6

through Fig. 21.9. This is a mid-latitude (latitude = 43.6 N, longitude = 18.92 W) Atlantic ocean, nighttime
profile acquired on Sep. 6, 2002. The ECMWF forecast for this location had 2.5 g/cm2 of total precipitable
water and a surface temperature of 293 K. In Fig. 21.6 and Table 21.7 the eigenvalues and the % un-damped
parameter φs,i

k are shown for each function. In this case we computed 5 trapezoids using 7 microwave channels.
The value of δBmax = 0.75 which corresponds to a critical threshold of λs

c = (0.75)−2 = 1.78.
In Fig. 21.7 and Table 21.8 the eigenvalues and the % un-damped parameter φs,i

k are shown for each
function. The value of δBmax = 0.5 which corresponds to a critical threshold of λs

c = (0.5)−2 = 4.0. In
Fig. 21.8 a coupled AIRS and HSB retrieval information content analysis is shown and in Fig. 21.9 the
information content analysis for the 10 µm ozone band is shown.

If no damping is required the change made in transformed parameter space, is given by ∆Bs,i+1
k (0).

Combining Eqn. 21.28 and Eqn. 21.37 yields

∆As,i+1
j (0) = Us,i

j,k ·∆Bs,i+1
k (0) = Us,i

j,k ·
1
λs,i

k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.40)

The changes can be damped by adding a value of ∆λs,i
k to the λs,i

k such that λs,i
k ≥ λs

c. This limits the noise
in ∆B to a maximum value,

δBs
max ≡ 1√

λs
c

or (21.41)

λs
c ≡

(
1

δBs
max

)2

(21.42)
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The damping parameter, δBs
max is determined empirically for each step and will be discussed in more detail

in the next section (see Eqn. 21.53).
Therefore, the fraction of the transformed function solved for is defined as

φs,i
k ≡

λs,i
k

λs,i
k + ∆λs,i

k

(21.43)

which is a diagonal matrix and where φs,i
k = 0 represents a parameter which is completely damped and φs,i

k = 1
is completely solved for. For completely damped eigenvalues, the change to the geophysical parameters is set
to zero and the first guess is unchanged for that component of the solution.

The size of λs,i
k and, therefore, λs

c will be proportional to the size of the perturbation functions, ∆
(
Âs

j

)2

(see Eqn. 21.13 or Eqn. 21.16).
The degrees of freedom (d.o.f.) is given by the sum of the significant eigenvalues. Given that we are

employing damping, the d.o.f. is given by

d.o.f. =
K∑

k=1

φs,i
k =

K∑
k=1

λs,i
k

λs,i
k + ∆λs,i

k

(21.44)

An example of the eigenvalues and damping for the same AIRS temperature retrieval shown in Fig. 21.7.
In Table 21.8 we show an example of the damping parameters for the profile in Figure 21.7. This is discussed
in more detail in Section 21.6. The function definition parameters are given in Table 21.12.

The damped change made to the transformed parameters is given by ∆Bs,i+1
k ≡ φs,i

k ·∆Bs,i+1
k (0) which

makes the damped change equal to

∆As,i+1
j = Us,i

j,k ·∆Bs,i+1
k = Us,i

j,k · φs,i
k ·

1
λs,i

k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.45)

Therefore, the difference between ∆As,i+1
j and ∆As,i+1

j (0) is the amount of the solution we did not believe.
If Eqn. 21.45 is to be iterated we will ultimately believe all of ∆As,i+1

j (0). Therefore, we need to adjust the
radiances. This will be discussed in Section 21.7. First, we will discuss how to compute the damping, ∆λs,i

k

in Section 21.6.

Table 21.7: Examples of eigenvalues and damping in q(p) retrieval using only HSB channels
δBmax=0.75, → λs

c =1.78
δBδBT

k λ ∆λ λ+ ∆λ λ
(λ+∆λ)2

≤ 1
λs

c
φ

1 0.5337 0.4403628 0.97407 0.563 54.8%
2 0.2181 0.4046021 0.62275 0.562 35.0%
3 0.0210 0.1722913 0.19331 0.562 10.9%
4 0.00046 0.0324068 0.03302 0.563 1.86%
5 0.21·10−5 0.00192 0.0019270 0.562 0.11%
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Figure 21.6: For water vapor functions, the new set of functions, F s
L,j · Us,i

j,k are shown for the HSB water
retrieval information content analysis. (see text for discussion)

Figure 21.7: For temperature functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown for the AIRS
temperature retrieval information content analysis. 10 functions are believed more than 5%. (see text and
Table 21.8 for discussion)



Chapter 21: AIRS Science Team Physical Algorithm Chris Barnet August 30, 2006 402

Table 21.8: Examples of eigenvalues and damping in T (p) retrieval
δBmax=0.5, → λs

c =4.0
δBδBT

k λ ∆λ λ+ ∆λ λ
(λ+∆λ)2

≤ 1
λs

c
φ

1 18.719 0.0000000 18.719 0.053 100.0%
2 8.321 0.0000000 8.321 0.120 100.0%
3 4.934 0.0000000 4.934 0.203 100.0%
4 3.127 0.4097646 3.537 0.250 88.4%
5 1.312 0.9788279 2.291 0.250 57.3%
6 0.6803703 0.9693209 1.650 0.250 41.2%
7 0.2902504 0.7872475 1.077 0.250 26.9%
8 0.1150753 0.5633797 0.6784550 0.250 17.0%
9 0.0315694 0.3237863 0.3553557 0.250 8.9%

10 0.0145968 0.2270374 0.2416341 0.250 6.0%
11 0.0033383 0.1122171 0.1155554 0.250 2.9%
12 0.0010262 0.0630414 0.0640675 0.250 1.6%
13 0.0007681 0.0546606 0.0554287 0.250 1.4%
14 0.0004635 0.0425941 0.0430576 0.250 1.1%
15 0.0001064 0.0205223 0.0206287 0.250 0.52%
16 0.38·10−4 0.0123341 0.0123724 0.250 0.31%
17 0.19·10−4 0.0085939 0.0086125 0.250 0.21%
18 0.77·10−5 0.0055413 0.0055490 0.250 0.14%
19 0.35·10−5 0.0037623 0.0037658 0.250 0.094%
20 0.10·10−5 0.0020347 0.0020357 0.250 0.051%
21 0.14·10−6 0.0007490 0.0007491 0.250 0.019%
22 0.43·10−7 0.0004137 0.0004138 0.250 0.010%
23 0.10·10−7 0.0002003 0.0002004 0.250 0.005%

Table 21.9: Examples of eigenvalues and damping in q(p) retrieval using AIRS channels
δBmax=1.0, → λs

c =1.0
δBδBT

k λ ∆λ λ+ ∆λ λ
(λ+∆λ)2

≤ 1
λs

c
φ

1 12.479 0.0000000 12.479 0.080 100.0%
2 2.843 0.0000000 2.843 0.352 100.0%
3 0.5519850 0.1909719 0.7429570 1.000 74.3%
4 0.3448268 0.2423928 0.5872195 1.000 58.7%
5 0.0917952 0.2111820 0.3029772 1.000 30.3%
6 0.0112219 0.0947117 0.1059337 1.000 10.6%
7 0.0013766 0.0357256 0.0371022 1.000 3.7%
8 0.0004012 0.0196295 0.0200307 1.000 2.0%
9 0.0001137 0.0105495 0.0106632 1.000 1.07%

10 0.58·10−5 0.0023981 0.0024039 1.000 0.24%
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Figure 21.8: For water vapor functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown for the AIRS
& HSB water retrieval information content analysis. 5 Functions are believed to more than 5(see text for
discussion)

Figure 21.9: For ozone functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown for the AIRS ozone
retrieval information content analysis. (see text for discussion)
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Table 21.10: Examples of eigenvalues and damping in O3(p) retrieval
δBmax=0.75, → λs

c =1.78
δBδBT

k λ ∆λ λ+ ∆λ λ
(λ+∆λ)2

≤ 1
λs

c
φ

1 10.474 0.0000000 10.474 0.095 100.0%
2 0.2253772 0.4076083 0.6329855 0.562 35.6%
3 0.0193429 0.1660956 0.1854385 0.563 10.4%
4 0.0016216 0.0520712 0.0536928 0.562 3.02%
5 0.0001840 0.0179036 0.0180876 0.563 1.02%
6 0.27E-04 0.0068383 0.0068649 0.563 0.39%
7 0.15E-04 0.0051318 0.0051467 0.563 0.29%

Figure 21.10: For ozone functions, the new set of vertical functions, F s
L,j ·Us,i

j,k are shown for the AIRS carbon
monoxide retrieval information content analysis. (see text for discussion)

Table 21.11: Examples of eigenvalues and damping in CO(p) retrieval
δBmax=1.5, → λs

c =0.44
δBδBT

k λ ∆λ λ+ ∆λ λ
(λ+∆λ)2

≤ 1
λs

c
φ

1 0.2500366 0.0833211 0.3333577 2.250 75.005 %
2 0.0012041 0.0219290 0.0231330 2.250 5.205 %
3 0.97E-04 0.0064536 0.0065501 2.250 1.474 %
4 0.32E-05 0.0011908 0.0011940 2.250 0.269 %
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Table 21.12: Function damping parameter for retrieval modules (PGE version 5.0)
number of

retrieval number of HALF HALF function channels damping parameter
step functions TOP BOT size µw IR δBs

max λs
c

RETAMSU 13 F F 1K, 0.01 11 0 1.00 1.00
CLOUDHGT(1) 4 - - 5%, 25mb - 58 20.0 0.0025

RETWATR(MHS) 5 T T 10% 3 0 0.75 1.78
RETSURF ≤ 5 3K, .01 0 25 0.50 4.0
RETTMP 23 F T 1K 7 108 0.25 16.0

CLOUDHGT(9) 20 - - 5%, 25mb - 58 4.00 0.0625
RETWATR(IR) 11 T T 10% 3 44 1.00 1.00

RETOZON 9 T T 10% 0 34 0.50 4.0
RETTMP # 2 23 F T 1K 7 124 0.25 16.0

RET CO 8 T T 10% 0 36 1.65 0.367
RET CH4 5 T T 2% 0 70 0.95 1.108
RET CO2 5 T T 1% 0 71 0.325 9.467

RET HNO3 5 T T 20% 0 8 1.00 1.00
RET N2O 5 T T 5% 0 52 1.00 1.00
RET SO2 5 T T 50% 0 63 1.00 1.00
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21.6 Determination of damping in transformed space

The uncertainty in ∆As,i+1
j , δAs,i+1

j , for a single profile is computed by differentiating Eqn. 21.45 with
respect to the derivative of O-C written as δΘ̃n. We then multiply resulting equation by its transpose (a RSS
of the errors). The result is

δAs,i+1
j

(
δAT

j

)s,i+1
= Us,i

j,k ·
φs,i

k

λs,i
k

·
[
UTSTN−1 ·

(
δΘ̃n · δΘ̃T

n

)
· (N−1

)T
SU
]
· φ

s,i
k

λs,i
k

· (UT
k,j

)s,i
(21.46)

Noting that N−1
n,n′ ≡

(
N−1

n′,n

)T

and
(
δΘ̃n · δΘ̃T

n′

)
� Ns

n,n′ then

δAs,i+1
j

(
δAT

j

)s,i+1
= Us,i

j,k ·
φs,i

k

λs,i
k

· [UTSTN−1SU
] φs,i

k

λs,i
k

· (UT
k,j

)s,i
(21.47)

= Us,i
j,k ·


 φs,i

k√
λs,i

k




2

· (UT
k,j

)s,i
(21.48)

= Us,i
j,k ·

λs,i
k(

λs,i
k + ∆λs,i

k

)2 ·
(
UT

k,j

)s,i
(21.49)

(21.50)

and if we define

λs,i
k(

λs,i
k + ∆λs,i

k

)2 ≡ δBs,i+1
k

(
δBT

k

)s,i+1
=

φs,i

λs,i
k + ∆λs,i

k

(21.51)

then we have

δAs,i+1
j

(
δAT

j

)s,i+1
= Us,i

j,k · δBs,i+1
k

(
δBT

k

)s,i+1 · (UT
k,j

)s,i
(21.52)

We can empirically define a maximum allowable noise to enter the retrieval, δBmax, which is the maximum
value of δBs,i+1

k allowed in Eqn. 21.52. A lower threshold of the eigenvalue is determined empirically,
λs

c ≡ (δBmax)−2, and used to determine the damping parameter ∆λs,i
k . We want the maximum allowable

noise in our parameters to be less than δBmax as follows

δBs,i+1
k ≤ δBmax (21.53)√

λs,i
k

λs,i
k + ∆λs,i

k

≤ 1√
λs

c

(21.54)

therefore, the damping parameter if given by

∆λs,i
k =

√
λs

c ·
√
λs,i

k − λs,i
k for λs,i

k ≤ λs
c (21.55)

=
√
λs,i

k ·
(√

λs
c −
√
λs,i

k

)
for λs,i

k ≤ λs
c (21.56)
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Table 21.13: Functional form of damping

value of λs,ik ∆λs,ik φs,ik result

λs,ik ≥ λsc 0 1 NOT damped

(0.05)2 · λsc < λs,ik < λsc
√

λsc ·
√

λs,ik − λs,ik
√

λs,ik /λsc damped

λs,ik ≤ (0.05)2 · λsc ∞ 0 turned OFF

A summary of the damping equations is given in Table 21.13
Damping of the change in transformed parameter space is equivalent to “sticking” to the first guess.

Thus, increasing δBmax will decrease the λ threshold, λs
c, which allows smaller λ’s to go undamped, i.e.,

equals less damping.

↑ δBs
max ⇓ λsc ⇓ (less)damping (21.57)

Figure 21.11: The damping parameter, ∆λ/λ and fraction solved for, φ, as a function of λ/λs
c. NOTE:

∆λ =
√
λs,i

k ·
√
λs

c − λs,i
k =

(√
λs,i

k − δBmax · λs,i
k

)
/δBmax. Also shown are damping curves for a linear

constrained algorithm with ∆λ = α · I, α = λc/8, λc/4, λc/2

21.7 Determination of the background radiance due to damping

The difference between ∆As,i+1
j (0) and ∆Ãs,i+1

j is due to part of the O-C residual which we did not believe.
This is due to

• Damping of the solution via ∆λs,i
k .
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• Non-linear effects due to the radiative transfer, R(Xs,i
L ) in ∆Θs,i

n .

• Non-linear effects in the Jacobian, Ss,i
n,j due to new state, Xs,i

L .

• Use of the background term (to be discussed here).

We can determine this part of the O-C residual, which we will call the background O-C, Ψs,i+1
n . The

background O-C can be computed in transformed space by applying Eqn. 21.26 on the changes that weren’t
made, as follows

Ψs,i+1
n = Ss,i

n,j ·
(
∆As,i+1

j (0)−∆Ãs,i+1
j

)
= Ss,i

n,j · Us,i
j,k ·

(
∆Bs,i+1

k (0)−∆B̃s,i+1
k

)
(21.58)

We will also show that
Ψs,i+1

n = ∆Θs,i
n − Ss,i

n,j ·∆Ãs,i+1
j (21.59)

Ψs,i+1
n represents the amount of the residual to be applied on the next iteration which is due to the change in

parameters not done during this iteration. Another way to look at this term is that it represents the fraction
of the residual due to the propagation of the first guess and is, therefore, sometimes called the background
term.

The background O-C is removed from the minimization as follows,

∆Ãs,i+1
j = Us,i

j,k ·∆B̃s,i+1
k = Us,i

j,k ·
φs,i

k

λs,i
k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.60)

where, Ψs,i=1
n is zero and future iterations are given by Eqn. 21.58. The tilde on Ã refers to the fact that

the background O-C (Ψs,i
n ) has been subtracted. Therefore we can write the entire equation as

Ãs,i+1
j = Ãs,i

j + Us,i
j,k ·

φs,i
k

λs,i
k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n

]
for i = 1

Ãs,i+1
j = Ãs,i

j + Us,i
j,k ·

φs,i
k

λs,i
k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1

·
[
∆Θs,i

n + Ss,i−1
n,j ·

(
∆As,i

j −∆As,i
j (0)

)]
for i > 1 (21.61)

Note that, if φk = 1 then ∆Bs,i
k = ∆Bs,i

k (0) and the kth functions contribution to Ψs,i+1
n is zero. Thus

for undamped channels the “background” term has no effect. In the program small non-linearities can cause
a small value of the background term to propagate into the solution so the value of ∆B̃s,i

k is set equal to ∆Bs,i
k

for ϕ = 1. As ∆B̃s,i
k approaches zero the process is converged and the background term is approximately

equal to

Ψs,i+1
n � Ss,i

n,j · Us,i
j,k ·∆Bs,i+1

k (0) (21.62)

Therefore, setting ∆B̃s,i+1
k and ∆Bs,i+1

k contribution of Ψs,i+1
n to zero when ∆Bs,i

k (0) is small can affect the
other functions. For this reason, the functions should not be “turned off” after iteration=1 for a given step.

The actual change to the geophysical state becomes

Xs,i+1
L = Xs,i

L +
∑

j

(
F s

L,j ⊗∆Âs
j

)
·∆Ãs,i+1

j (21.63)
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Alternatively, one could change the geophysical state in transformed space by using Eqn. 21.39 to obtain

Xs,i+1
L = Xs,i

L +
∑

k

GL,k ·∆B̃s,i
k

= Xs,i
L + GL,k · φ

s,i
k

λs,i
k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.64)

21.7.1 The background radiance, an example

It is tempting to think of the background radiance as the Rodgers background term. If we assume the first
guess is equal to the a priori, A1

j = Aa
j , then Eqn. 19.16 in Chapter 19 can be written as

As,i+1
L = As,1

L +
(
HL,L +

(
ST

L,n

)s,i · (Ns
n,n

)−1 · Ss,i
n,L

)−1

· (ST
L,n

)s,i · (Ns
n,n

)−1 ·[
∆Θs,i

n + Ss,i
n,L

(
As,i

L −As,1
L

)]
(21.65)

Comparing Eqn. 21.61 to this equation we see that our equation is using the previous iteration, Ai for
the first guess whereas the Rodger’s equation is always using the first guess state, As,1. Using the previous
iteration is something that is severely frowned upon by Rodgers. But in Rodgers formulation in Eqn. 19 the
term Ss,i

n,L

(
Ai

L −A1
L

)
is necessary to maintain the perturbation, As,i

L − A1
L, as the iterations converge (i.e.,

∆Θs,i
n → 0). Therefore, in the Rodger’s approach the derivatives and forward model use the new solution

but we always “pivot” off the first guess state. If we believe 100% of the radiances (i.e., all elements of HL,L

are zero) then it is easy to see that when it converges, ∆Θs,i
n → 0 this equation reduces to

As,i+1
L = As,1

L +G−1
L,L ·GL,L

(
As,i

L −As,1
L

)
= As,i

L (21.66)

and when HL,L is non zero the components of the radiances that have significant contribution, that is, the
rows of Sn,L that are significant will affect the convergence. Where the radiances have no contribution the
result will be the trivial solution, that is, the first guess.

In Eqn. 21.61 the situation is much different. As ∆Θs,i
n approaches zero the background radiance

is removing the component of the radiances that are both significant and that we do not believe due to
signal-to-noise limitations.

It is instructive to see how this term behaves in the iterative sense. To simplify Eqn. 21.61 we will define
two variables. Do not confuse this variable the G function defined in Eqn. 21.39.

Gs,i
j,j ≡ Us,i

j,k ·
φs,i

k

λs,i
k

· (UT
k,j

)s,i
(21.67)

and

Ds,i
j,j ≡

[(
ST

j,n

)s,i · (Ns
n,n

)−1
Ss,i

n,j

]−1

= Us,i
j,k

1
λs,i

k

(
UT

k,j

)s,i
(21.68)

so that Eqn. 21.61 becomes

Ãs,i+1
j = Ãs,i

j +Gs,i
j,j ·
(
ST

j,n

)s,i · (Ns
n,n

)−1 ·
[
∆Θs,i

n + Ss,i−1
n,j ·

(
∆As,i

j −∆As,i
j (0)

)]
(21.69)

and we can rewrite Eqn 21.40 as

∆As,i+1
j (0) = Ds,i

j,j′ ·
(
ST

j,n

)s,i · (Ns
n,n

)−1 ·∆Θs,i
n (21.70)
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On iteration #1 our three equations are given by

1. The undamped equation is given by

As,2(0) = As,1
j +Ds,1

j,j ·
(
ST

j,n

)s,1 · (Ns
n,n

)−1 · [∆Θs,1
n

]
(21.71)

2. The damped equation without background is given by

As,2 = As,1
j +Gs,1

j,j ·
(
ST

j,n

)s,1 · (Ns
n,n

)−1 · [∆Θs,1
n

]
(21.72)

3. and the new solution (remember Ψs,i=1
n ≡ 0) is given by

Ãs,2
j = As,1

j +Gs,1
j,j ·

(
ST

j,n

)s,1 · (Ns
n,n

)−1 · [∆Θs,1
n

]
= As,2

j (21.73)

4. the background radiance, for the next iteration is given by

Ψs,2
n = Ss,1

n,j ·
(
∆As,2

j (0)−∆Ãs,2
j

)
(21.74)

On iteration #2 our three equations are given by

1. The undamped equation is given by

As,3(0) = Ãs,2
j +Ds,2

j,j ·
(
ST

j,n

)s,2 · (Ns
n,n

)−1 · [∆Θs,2
n

]
(21.75)

2. The damped equation without background is given by

As,3 = Ãs,2
j +Gs,2

j,j ·
(
ST

j,n

)s,2 · (Ns
n,n

)−1 · [∆Θs,2
n

]
(21.76)

3. and the new solution is given by

Ãs,3
j = Ãs,2

j +Gs,2
j,j ·

(
ST

j,n

)s,2 · (Ns
n,n

)−1 ·
[
∆Θs,2

n + Ss,1
n,j ·

(
∆Ãs,2

j −∆As,2
j (0)

)]
(21.77)

4. the background radiance, for the next iteration is given by

Ψs,3
n = Ss,2

n,j ·
(
∆As,3

j (0)−∆Ãs,3
j

)
(21.78)

But we can substitute Eqn. 21.71 into Eqn. 21.77, that is taken the quantities computed on the 1st iteration
and substituting them into the 2nd iteration. Remember that on the 1st iteration ∆Ãs,2

j = ∆As,2
j and,

therefore, Ãs,2
j = As,2

j . Also note that since the state we use as the first guess for an iteration, in this case
Ãs,2

j , is the same for ∆A(0), ∆A, and ∆Ã then ∆As,3
j (0)−∆Ãs,3

j ≡ As,3
j (0)− Ãs,3

j

Ãs,3
j = Ãs,2

j +Gs,2
j,j ·

(
ST

j,n

)s,2 · (Ns
n,n

)−1 ·
[
∆Θs,2

n + Ss,1
n,j ·

(
Ãs,2

j −As,2
j (0)

)]
= Ãs,2

j +Gs,2
j,j ·

(
ST

j,n

)s,2 · (Ns
n,n

)−1 ·[
∆Θs,2

n + Ss,1
n,j ·

(
Ãs,2

j − Ãs,1
j −Ds,1

j,j ·
(
ST

j,n

)s,1 · (Ns
n,n

)−1 · [∆Θs,1
n

])]
= Ãs,2

j +Gs,2
j,j ·

(
ST

j,n

)s,2 · (Ns
n,n

)−1 ·[
∆Θs,2

n + Ss,1
n,j ·

(
Ãs,2

j − Ãs,1
j

)
− Ss,1

n,j ·Ds,1
j,j ·

(
ST

j,n

)s,1 · (Ns
n,n

)−1 ·∆Θs,1
n

]
(21.79)
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We can simplify the expression if we can eliminate Ds,1
j,j in the expression above. Noting that

Qn,n ≡ Ss,1
n,j ·Ds,1

j,j ·
(
ST

j,n

)s,1 · (Ns
n,n

)−1

Qn,n · Ss,1
n,j = Ss,1

n,j ·Ds,1
j,j ·

(
ST

j,n

)s,1 · (Ns
n,n

)−1 · Ss,1
n,j

Qn,n · Ss,1
n,j = Ss,1

n,j

Qn,n = In,n (21.80)

Therefore,

Ss,1
n,j ·Ds,1

j,j ·
(
ST

j,n

)s,1 · (Ns
n,n

)−1 = In,n (21.81)

So that our expression simplifies to

Ãs,3
j = Ãs,2

j +Gs,2
j,j ·

(
ST

j,n

)s,2 · (Ns
n,n

)−1 ·
[
∆Θs,2

n −∆Θs,1
n + Ss,1

n,j ·
(
Ãs,2

j − Ãs,1
j

)]
(21.82)

Recalling that ∆Θs,i
n is given by Eqn. 21.6 given by

∆Θs,i
n ≡

(
Rs

n,CCR −Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))




−1

(21.83)

we notice that our damped equation with background has become independent of the observations. Only
non-linear contributions of the radiative transfer equation will alter the state, that is if

Rn

(
Xs,2

L

)
−Rn

(
Xs,1

L

)
�= Ss,1

n,j ·
(
Ãs,2

j − Ãs,1
j

)
· ∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,1
N ))

(21.84)

the state will be modified by the fraction of the difference that can be believed by the information content
analysis, Gs,2

j,j ·
(
ST

j,n

)s,2 · (Ns
n,n

)−1. Only then will the solution be modified. The background radiance will
be recomputed about the new derivative, Ss,2

n,j , and the values of As,3
j (0) and As,3

j (notice that this is NOT
Ãs,3

j ). These equations utilize the observations and the new state, Ãs,2
j to re-evaluate the background and

prevent the answer from walking away from the solution. Only components we are justified in making enter
into the solution for the background radiance. Of course, the success of this retrieval depends on having error
estimates that are reasonable. If error estimates are too low, then this can cause the algorithm to become
unstable. When in doubt it is alway best to overestimate the errors.

On iteration #3 our three equations are given by

1. The undamped equation is given by

As,4(0) = Ãs,3
j +Ds,3

j,j ·
(
ST

j,n

)s,3 · (Ns
n,n

)−1 · [∆Θs,3
n

]
(21.85)

2. The damped equation without background is given by

As,4 = Ãs,3
j +Gs,3

j,j ·
(
ST

j,n

)s,3 · (Ns
n,n

)−1 · [∆Θs,3
n

]
(21.86)

3. and the new solution is given by

Ãs,4
j = Ãs,3

j +Gs,3
j,j ·

(
ST

j,n

)s,3 · (Ns
n,n

)−1 ·
[
∆Θs,3

n + Ss,1
n,j ·

(
∆̃As,3

j −∆As,3
j (0)

)]
(21.87)
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4. the background radiance, for the next iteration is given by

Ψs,4
n = Ss,3

n,j ·
(
∆As,4

j (0)−∆Ãs,4
j

)
(21.88)

But we can substitute Eqn. 21.75 into Eqn. 21.87, that is taken the quantities computed on the 2nd iteration
and substituting them into the 3rd iteration.

Ãs,4
j = Ãs,3

j +Gs,3
j,j ·

(
ST

j,n

)s,3 · (Ns
n,n

)−1 ·
[
∆Θs,3

n + Ss,2
n,j ·

(
Ãs,3

j −As,3
j (0)

)]
= Ãs,3

j +Gs,3
j,j ·

(
ST

j,n

)s,3 · (Ns
n,n

)−1 ·[
∆Θs,3

n + Ss,2
n,j ·

(
Ãs,3

j − Ãs,2
j −Ds,2

j,j ·
(
ST

j,n

)s,2 · (Ns
n,n

)−1 · [∆Θs,2
n

])]
= Ãs,3

j +Gs,3
j,j ·

(
ST

j,n

)s,3 · (Ns
n,n

)−1 ·[
∆Θs,3

n −∆Θs,2
n + Ss,2

n,j ·
(
Ãs,3

j − Ãs,2
j

)]
(21.89)

Again, we notice that our damped equation with background has become independent of the observations.
Only non-linear contributions of the radiative transfer equation will alter the state, that is if

21.8 Retrieval convergence criteria, quality indicators, and rejec-
tion

The radiance residuals, with the background term (Ψs,i−1
n ) subtracted, are used to determine if the iterations

have converged to a solution. The residuals are written in terms of the changes actually made:

resids,i+1 =
√∑

k

(∆B̃s,i+1
k )2 (21.90)

and compared to the expected noise in these parameters.

noisets,i+1 =

√√√√ K∑
k=1

(δBs,i+1
k )2 =

√√√√ K∑
k=1

(φs,i
k )2

λs,i
k )

=

√√√√√ K∑
k=1

λs,i
k(

λs,i
k + ∆λs,i

k

)2 (21.91)

The retrieval is considered to be converged if

1. resids,i+1 ≤ 0.1 · noiset

2. resids,i+1 ≥ 0.7 · resids,i for i ≥ 3

The residuals quality indicator is directly related to a ratio of the retrieval’s radiance residuals (observed
minus calculated) to the expected noise in those radiances. The expected noise includes instrumental and
forward model (i.e., computational) noise which arises from cloud clearing and uncertainties in retrieval
parameters which are assumed known (held constant in a given step) and can be spectrally correlated. The
actual computation is done within the retrieval code and we need to review the least-squares minimization
methodology to understand the variables that are used to compute the quality indicator.

The retrieval convergence criterion is based on the RSS of the actual changes made and compares them
to the RSS of the expected noise in the changes. In contrast, the quality indicator does NOT remove the
portion of the radiance residual that was not believed (background radiance Ψs,i−1

n ) as follows
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quality ≡

√∑
k

(
∆Bs,i+1

k

)2

√∑
k

(
δBs,i+1

k

)2
=

√√√√√√√
∑
k

(
φ(k) ·∆Bs,i+1

k (0)
)2

∑
k

(
φs,i

k

)2

/λs,i
k

=

√√√√√√√
∑
k

(
φ(k) ·∆Bs,i+1

k (0)
)2

∑
k

φs,i
k

λs,i
k

+∆λs,i
k

(21.92)

We use the quality indicator from the temperature and surface retrieval as rejection criteria. If either
one exceeds a threshold, specified via namelist, the profile is rejected. Eqn. 21.92 is seen to be a ratio
of the radiance residuals (given as an RSS ∆B0) to the expected radiance residuals (given by the formal
least-squares error estimate of λ−

1
2 ) for the radiances we believe.

This quality indicator is less than or equal to one when the retrieval quality is within our expectations. This is
a relative concept and if one wants to know the retrieval quality in an absolute sense, as in an error estimate,
then a χ2 type of test should be constructed.

21.9 Rejection Criteria

A profile is rejected if any of the conditions itemized below is true. The # refers to the step # in Table 21.5.

• a row of Ss,i
n,j is zero. That is all Ss,i

n,j for a given j are zero in any step.

• determined cloud fraction within AMSU footprint exceeds 80% (step # 18).

• cloud clearing quality indicator (etarej in Eqn. 7.69) exceeds 1.75 on the cloud clearing after the NOAA
regression (step # 12).

• Effective amplification factor exceeds 10. (see Eqn. 7.70)

• the final temperature profile (step # 21) and the temperature profile from the preceding AMSU tem-
perature retrieval (step # 17) disagree in the RMS of the bottom two 1-km layers by 2◦.

[
1
2

2∑
k=1

(
F s

L,k ⊗ T s=21
L − F s

L,k ⊗ T s=17
L

)2] 1
2

≥ 2◦ (21.93)

where F s
L,k are two functions that averages the lower ≈ 1 km layers.

• the RMS of O-C brightness temperatures exceed 1.75 for a sub-set of AMSU channels (currently AMSU
channels 3, 4, 5, 6, 7, 8, 9, 10, 11 are used after step # 21)




L∑
n=1

(
1

NE∆T

)2 (Θn,CCR −Θn(Xs=21
L )

)2
∑
n=1

(
1

NE∆T

)2



1
2

≥ 1.75◦ (21.94)

• if the amplification factor exceeds 2.0 and the retrieval cloud fraction is between 65% and 80% and
there is more than 10% of the cloudiness with cloud top pressure exceeding 500 mb after step # 19.

• quality indicator from final surface retrieval exceeds 1.25 (step # 20)

• quality indicator from final temperature retrieval exceeds 1.25 (step # 21)
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21.10 SIDEBAR: damping in the un-transformed space

In the un-transformed space a damped Eqn. 21.28 is traditionally (e.g., see Rogers, Twomey) written as

∆Ãs,i+1
j =

[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j +Hs,i
j,j′

]−1

· (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.95)

which can be written in terms of a damping parameter as follows

∆Ãs,i
j = Φs,i

j,j′ ·
[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j

]−1

· (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.96)

where,

Φs,i
j,j′ =

[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j +Hs,i
j,j′

]−1

·
[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j

]
(21.97)

equating Eqn. 21.96 to Eqn. 21.61 yields

Φs,i
j,j′ ·

[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j

]−1

= Us,i
j,k · φs,i

k ·
1
λs,i

k

· (UT
k,j

)s,i
(21.98)

Φs,i
j,j′ ·

[(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j

]−1

= Us,i
j,k · φs,i

k ·[(
UT

k,j

)s,i (
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,jU
s,i
j,k

]−1 (
UT

k,j

)s,i
(21.99)

Φs,i
j,j′ = Us,i

j,k · φs,i
k ·
[(
UT

k,j

)s,i (
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,jU
s,i
j,k

]−1

· (UT
k,j

)s,i
[
Ss,i

n,j

(
Ns

n,n

)−1 (
ST

j,n

)s,i
]

(21.100)

Φs,i
j,j′ = Us,i

j,k · φs,i
k ·
[(
UT

k,j

)s,i (
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,jU
s,i
j,k

]−1

(21.101)

·
[
Us,i

j,kS
s,i
n,j

(
Ns

n,n

)−1 (
ST

j,n

)s,i (
UT

k,j

)s,i
] (
UT

k,j

)s,i
(21.102)

Φs,i
j,j′ = Us,i

j,k · φs,i
k ·
(
UT

k,j

)s,i
(21.103)

Note: remember that φs,i
k is really the diagonal portion of a 2-dimensional matrix φs,i

k,k′ where all the off-
diagonal terms are zero.

In addition, this relationship will allow equating 21.95 and Eqn. 21.61 to derive ∆λs,i
k from Hi,i′ . Given

that
(
ST

j,n

)s,i (
Ns

n,n

)−1
Ss,i

n,j ≡ Us,i
j,kλ

s,i
k Us,i

j,k we can write Eqn. 21.95 as

∆Ãs,i
j =

[
Us,i

j,kλ
s,i
k

(
UT

k,j

)s,i
+Hs,i

j,j′

]−1

· (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.104)

Then equating the Eqn. 21.104 with Eqn. 21.61 we have

[
Us,i

j,kλ
s,i
k

(
UT

k,j

)s,i
+Hs,i

j,j′

]−1

= Us,i
j,k ·

φs,i
k

λs,i
k

· (UT
k,j

)s,i
(21.105)

(21.106)

Ij,j =
[
Us,i

j,kλ
s,i
k

(
UT

k,j

)s,i
+Hs,i

j,j′

]
· Us,i

j,k ·
φs,i

k

λs,i
k

· (UT
k,j

)s,i
(21.107)
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Ij,j = Us,i
j,kλ

s,i
k

(
UT

k,j

)s,i · Us,i
j,k ·

φs,i
k

λs,i
k

· (UT
k,j

)s,i
+Hs,i

j,j′ · Us,i
j,k ·

φs,i
k

λs,i
k

· (UT
k,j

)s,i
(21.108)

Ij,j · Us,i
j,k = Us,i

j,kλ
s,i
k

(
UT

k,j

)s,i · Us,i
j,k ·

φs,i
k

λs,i
k

+Hs,i
j,j′ · Us,i

j,k ·
φs,i

k

λs,i
k

(21.109)

Us,i
j,k = Us,i

j,k · φs,i
k +Hs,i

j,j′ · Us,i
j,k ·

φs,i
k

λs,i
k

(21.110)

(
UT

k,j

)s,i · Us,i
j,k = φs,i

k +
(
UT

k,j

)s,i ·Hs,i
j,j′ · Us,i

j,k ·
φs,i

k

λs,i
k

(21.111)

λs,i
k

φs,i
k

= λs,i
k +

(
UT

k,j

)s,i ·Hs,i
j,j′ · Us,i

j,k (21.112)

λs,i
k + ∆λs,i

k = λs,i
k +

(
UT

k,j

)s,i ·Hs,i
j,j′ · Us,i

j,k (21.113)

∆λs,i
k =

(
UT

k,j

)s,i ·Hs,i
j,j′ · Us,i

j,k (21.114)

Hs,i
j,j′ = Us,i

j,k ·∆λs,i
k ·
(
UT

k,j

)s,i
(21.115)

In the retrieval code the Hs,i
j,j′ matrix will be printed if the iprt ≥ 5.

21.11 error in the determined coefficients and geophysical state

21.11.1 Overview of steps in most recent (errmode=6) methodology

1. begin with an initial guess, X0,0
L and an ensemble error estimate for the geophysical state, δX1,1

L , and
a null estimate, δXN

L these are combined into an effective geophysical error estimate (Eqn. 21.116)

δX̂s,1
L ≡ MAX

(
δXs,1

L − δXN
L , 0.00001

)

2. convert the initial error estimate into a parameter error (Eqn. 21.135) for parameters being solved for

δÃs,2
j ⊗∆Âs

j =

√[(
FT

j,L

)2

· F 2
L,j

]−1

·
(
FT

j,L

)2

·
(
δX̂s,1

L

)2

δÃs,i+1
j = δÃs,i

j for i > 1

δÃs,i
j =

δÃs,i
j ⊗∆Âs

j

∆Âs
j
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3. using the remaining geophysical error estimates, δXs,1
L , compute a error covariance matrix for the

parameters held constant in the retrieval (Eqn. 21.22, Eqn. 21.23), S-matrix, and then compute
fraction solved for (φs,i

k , Eqn. 21.43)

4. compute the error in retrieved transformed parameters and add it in the RSS sense to the first guess
transformed parameter (step #2) using Eqn. 21.129 and Eqn. 21.130

δB̃s,i
k =

√√√√∑
j

((
UT

k,j

)s,i

· δÃs,i
j

)2

NOTE: It is important when J > N (e.g., RETMHS step) to set the vector Uk,j to zero for all λk <
10−9.

δÃs,i+1
j =

√√√√√∑
k

(
Us,i

j,k ·
(
1− φs,i

k

)
· δB̃s,i

k

)2

+
∑

k


Us,i

j,k ·
φs,i

k√
λs,i

k




2

5. within a given retrieval step, the iterations will cycle within step #4 until convergence is reached. Then
the parameter error estimate is converted into a geophysical error estimate as follows (Eqn. 21.134)

δX̂s,I+1
L =

√∑
j

(
F s

L,j ·
(
∆Âs

j ⊗ δÃs,I+1
j

))2

21.11.2 Step 1: derivation by ignoring background term

We assume that the uncertainty in the geophysical state is a combination of a null-space-error term, δXN
L ,

and the uncertainties in the parameters which are propagated from errors in the clear column radiances,
through the retrieval solution (and regression, where appropriate) of geophysical parameters, ∆Ãs,i

j . The
null-space-error term arises from uncertainties due to the non-uniqueness of the solution and is completely
removed from the computation.

δX̂s,i
L ≡ MAX

(
δXs,i

L − δXN
L , 0.00001

)
(21.116)

Usually, the adjustments at each retrieval stage converge to less than 10% of predicted error estimate of
the adjustment. The new geophysical state after many iterations, I, is given by

Xs,i+1
L = X1

L +
∑

i

∑
j

(
F s

L,j ⊗∆Âs
j

)
·∆Ãs,i+1

j (21.117)

= X1
L +

∑
i

∑
k

Gs,i
L,k ·∆B̃s,i+1

k (21.118)

where Gs,i
L,k is defined in Eqn. 21.39 and the error estimate, δX, is found by adding the uncertainty in the

retrieval parameters in the RSS sense (done in slab2err.F).
Note that Eqn. 21.48 can be written in terms of the geophysical state, δX̂L of

δX̂s,i+1
L ·

(
δX̂s,i+1

L

)T

= GL,k ·

 φs,i

k√
λs,i

k




2

·GT
k,L (21.119)
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The jth diagonal component of Eqn. 21.52 equals

δAs,i+1
j =

√∑
j

(
Us,i

j,k · δB̃s,i+1
k

)2

=

√√√√√∑
k


Us,i

j,k ·
φs,i

k√
λs,i

k




2

=

√√√√√∑
k

(
Us,i

j,k · φs,i
k

)2

λs,i
k

(21.120)

which corresponds to an error in the Lth diagonal component of the geophysical state of

δX̂s,i+1
L =

√√√√√∑
j

(
F s

L,j ⊗∆Âs
j

)2∑
k

(
Us,i

j,k · φs,i
k

)2

λs,i
k

=

√√√√√∑
k

(
GL,k · φs,i

k

)2

λs,i
k

(21.121)

however, this is only one component of the error in XL.

δX̂s,i+1
L =

√∑
j

((
F s

L,j ⊗∆Âs
j

)
· δAs,i+1

j

)2

(21.122)

=
√∑

j

F 2
L,j ·

(
∆Âs

j ⊗ δAs,i+1
j

)2

(21.123)

=

√∑
k

(
GL,k · δBs,i+1

k

)2

(21.124)

We could use the change to be applied in the next iteration which was not applied, ∆As,i+1
j , as an

additional estimate of the uncertainty.

δX̂s,i+1
L =

√∑
j

(
F s

L,j ⊗∆Âs
j

)2

·
(
(δAs,i+1

j )2 + (∆As,i+1
j )2

)
(21.125)

=

√√√√∑
j

F 2
L,j ·

[(
∆Âs

j ⊗ δAs,i
j

)2

+
(
∆Âs

j ⊗∆As,i+1
j

)2
]

(21.126)

=
√∑

j

G2
L,k ·

(
(δBs,i+1

k )2 + (∆Bs,i+1
k )2

)
(21.127)

We have three kinds of convergence. In the 3 cases we could

1. when converged to less than 10% of the expected residual extrapolate to the ∆As,i+1
j , maybe something

like ∆As,i+1
j = ∆As,i

j − (∆As,i
j −∆As,i−1

j ).

2. when convergence is too slow, the 75% test, then the retrieval is backed up to the previous iteration
and we already have ∆As,i+1

j . This is done when errtype=7.

3. if the iterations exceed the maximum number of iterations (currently set to 10) then extrapolate as in
case # 1.
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21.11.3 Error in geophysical parameters with damping

Damping effectively returns part of the first guess. Therefore, we need a mechanism to propagate part of the
first guess error into the error at iteration i. A simple thought experiment is to imagine that λs

c is very large
such that all the φ’s are zero. In that case 100% of the first guess is returned and the error should remain
unchanged. A reasonable approach, in parameters space, is as follows

δÃs,i+1
j =

√∑
k

(
Us,i

j,k · (1− φs,i
k ) · δB̃s,i

k

)2

(21.128)

where the error in the transformed guess parameter is given by as RSS of the geophysical parameter error.

δB̃s,i
k =

√√√√∑
j

((
UT

k,j

)s,i

· δÃs,i
j

)2

(21.129)

If the error in the geophysical parameters from a previous iteration is known, δÃs,i
j , then it is reasonable

to compute the error in the geophysical parameters for the current iterations as follows

δÃs,i+1
j =

√√√√√∑
k


Us,i

j,k ·
φs,i

k√
λs,i

k




2

+
∑

k

(
Us,i

j,k · (1− φs,i
k ) · δB̃s,i

k

)2

(21.130)

and the error in the geophysical state would become

δX̂s,i+1
L =

√∑
j

(
F s

L,j ⊗∆Âs
j

)2

· (δÃs,i+1
j )2 (21.131)

δX̂s,i+1
L =

√∑
j

F 2
L,j · (∆Âs

j ⊗ δÃs,i+1
j )2 (21.132)

A possible alternative (not currently implemented), is to combine Eqn. 21.130 and Eqn. 21.132 (in err2slab.F)

δX̂s,i
L =

√√√√√∑
k


GL,k · φs,i

k√
λs,i

k




2

+
∑

k


GL,k · (1− φs,i

k ) ·
√√√√∑

j

((
UT

k,j

)s,i

· δÃs,i−1
j

)2



2

(21.133)

21.11.4 Error in the parameters determined from the geophysical error

For vertical functions, Eqn. 21.132 can be solved in an RSS sense to yield an equation for the first guess
parameter error

(
δX̂s,i

L

)2

= F 2
L,j ·

(
∆Âs

j ⊗ δÃs,i
j

)2

(21.134)

solving for the parameters is then given by(
∆Âs

j ⊗ δÃs,i
j

)2

=
[(
FT

j,L

)2 · (FL,j)
2
]−1

· (FT
j,L

)2 · (δX̂s,i
L

)2

(21.135)
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Figure 21.12: The error correlation as computed by Eqn. 21.135.

The first guess geophysical parameter error, δÃs,i
j , which can be written as a weighted average of the

geophysical state error, δX̂s,i
L where the weighting is given by Eqn. 21.135. In Fig. 21.12 we show the

weighting function
[(
FT

j,L

)2 · F 2
L,j

]−1

·(FT
j,L

)2 for each geophysical parameter as a solid line. These are shown
for the lower functions in Fig. 21.3 with dotted horizontal lines showing the limits of the trapezoidal “plateau”.
Also shown, as a dotted line, is a simple weighted average of the geophysical state error,

√
FL,j/ (

∑
L FL,j).

The parameter error should be conserved upon multiple iterations of Eqn. 21.132 and Eqn. 21.135. The
error could be written in terms of the transformed functions as follows

(
δB̃s,i+1

k

)2

=
[(
GT

j,L

)2 · (GL,k)2
]−1

·
(
GT

j,L · δX̂s,i
L

)2

(21.136)

however, We need to investigate the stability of
[(
GT

j,L

)2 · (GL,k)2
]−1

.

Another approach would be to operate in geophysical state space instead of parameter space. The Lth

component would be

δX̂s,i+1
L =

√
(φs,i

L )2 ·G2
L,k · (δBs,i+1

k )2 + (1− φs,i
L )2 · δ(̂Xs,i

L )2 (21.137)

where φs,i
L is the transformation of the damping parameter, φs,i

k into geophysical state space. In this formula-
tion, the pre-damped error, δBs,i

k , would be multiplied by the undamped fraction at the end. We can equate
the two formulations to determine

(φs,i
L )2 · (Gs,i

L,k)2
1
λs,i

k

= (Gs,i
L,k)2 · φs,i

k√
λs,i

k

(21.138)

which would be given by
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(
φs,i

L

)2

·
(
Gs,i

L,k

)2

=
(
Gs,i

L,k

)2

· φs,i
k√
λs,i

k

·
(

1
λT

k

)s,i

(21.139)

(
φs,i

L

)2

·
(
Gs,i

L,k

)2

=
(
Gs,i

L,k

)2

· φs,i
k (21.140)

(
φs,i

L

)2

·
(
Gs,i

L,k

)2

·
((

Gs,i
L,k

)2
)T

=
(
Gs,i

L,k

)2

· φs,i
k

((
GT

L,k

)s,i
)2

(21.141)

Both of these formulations have a flaw. Imagine a single trapezoidal state function. The error along the
sides of this function is only partially determined; however, all the methods discussed this far would return
a fraction of the solved error. So far, so good. But, if the function was determined 100%, there would be no
first guess error and the total error estimate would be too low. Thus, we need to include all functions, even
those not solved for in the error analysis. If some functions are excluded then they still need to propagate
the first guess error. Here is another method

φs,i
L =

∑
k

(
Gs,i

L,k

)2

· φ2
k (21.142)

21.11.5 Documentation of errtype variable in err2slab.F, retreig, slab2err.F

The error estimate computation is a current area of research. The method of computation in the AIRS science
team code is determined by a namelist parameter called errtype. The current code at JPL is emulated with
errtype=1 while the current AIRS science team system uses errtype=6. Other error types are methods of
computation that have been investigated.
in err2slab.F

• errtype=1,2,3,4

δÃs,i
j ⊗∆Âs

j =

∑
L

(
F s

j,L

)T · δXs,i
L

∑
L

(
F s

j,L

)T
(21.143)

• errtype = 5

δÃs,i
j ⊗∆Âs

j =

√[(
FT

j,L

)2

· F 2
L,j

]−1

·
(
FT

j,L

)2

·
(
δX̂s,i

L

)2

(21.144)

• errtype = 6, 7, 8

δÃs,i
j ⊗∆Âs

j =

√[(
FT

j,L

)2

· F 2
L,j

]−1

·
(
F 2

j,L

)T

·
(
δX̂s,i

L

)2

δÃs,i+1
j = δÃs,i

j for i > 1 (21.145)

NOTE: in ret’s the values of

δÃs,i
j =

δÃs,i
j ⊗∆Âs

j

∆Âs
j

(21.146)

in retreig.F
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δB̃s,i
k =

√√√√∑
j
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UT

k,j

)s,i

· δÃs,i
j

)2

(21.147)

• errtype=1,5,6,7

δÃs,i+1
j =

√√√√√∑
k

(
Us,i

j,k ·
(
1− φs,i

k

)
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+
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k√
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k




2

(21.148)

• errtype = 2 (NOTE: |∆B̃s,i+1
k | is the absolute value of the retrieved changed without the background

term)

δÃs,i+1
j =

√√√√√∑
k

(
Us,i

j,k ·
(
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)
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+
∑
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• errtype = 3

δÃs,i+1
j =

√√√√∑
k

(
Us,i

j,k ·
(
1− φs,i

k

)
· δB̃s,i
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+
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(
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k

∣∣∣∣
)2

(21.150)

• errtype = 4

δÃs,i+1
j =

√√√√(φj

∑
k

Us,i
j,k ·

∣∣∣∣∆B̃s,i+1
k
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)2 (

(1− φj) · δÃs,i
j
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(21.151)

where,

φj ≡
√∑

k

(Us,i
j,k)2 · φs,i

k (21.152)

• errtype = 8

δÃs,i+1
j =

√√√√√∑
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(21.153)

in slab2err.F and ret’s

• errtype ≤ 4

δXs,i+1
L =

√∑
j

F s
L,j ·

(
∆Âs

j ⊗ δÃs,i+1
j

)2

(21.154)

• errtype = 5, 6

δXs,i+1
L =

√∑
j

(
F s

L,j ·
(
∆Âs

j ⊗ δÃs,i+1
j

))2

(21.155)

• errtype = 7 (when retrieval does not converge (see Eqn.21.126)

δXs,i+1
L =

√√√√∑
j

F 2
L,j ·

[(
∆Âs

j ⊗ δAs,i+1
j

)2

+
(
∆Âs

j ⊗∆As,i+1
j

)2
]

(21.156)
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21.12 Some thoughts on using background term

with background term

The geophysical parameters are adjusted according to Eqn. 21.45 and Eqn. 21.58 as follows

Xs,i+1
L = Xs,i

L +
∑

j

(
F s

L,j ⊗∆Âs
j

)
·∆Ãs,i+1

j (21.157)

= Xs,i
L +

∑
j

GL,k ·∆B̃s,i+1
k (21.158)

= Xs,i
L +Gs,i

L,k ·
φs,i

k

λs,i
k

· (UT
k,j

)s,i · (ST
j,n

)s,i · (Ns
n,n

)−1 · [∆Θs,i
n −Ψs,i

n

]
(21.159)

In retrievals with damping, some of the error estimate of the solution, δXs,i
L , comes from the propagated

uncertainty of the first guess, δXs,i−1
L . The background term can be treated separately and is an additional

error source to the error determined in Eqn. 21.119

δX̂L

(
δX̂L

)T

= Y ·
[
δΘδΘT + δΨs,i

n ·
(
δΨs,i

n′

)T
]
· Y T (21.160)

= Y · [δΘδΘT
] · Y T + Y ·

[
δΨn · (δΨn)T

]
· Y T (21.161)

=
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L,j ⊗∆Âs
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j,k · φs,i
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)2

λs,i
k

+ Y s,i
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[
δΨn · (δΨn′)T

]
·
(
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(21.162)

where, Y s,i
L,n = Gs,i

L,k ·
φs,i

k

λs,i
k

·
(
UT

k,j

)s,i

· (ST
j,n

)s,i · (Ns
n,n

)−1. In this section we will simplify the second term

and then compute the propagated error due to the background term. The portion of δX̂s,i+1
L due to the

background radiance, δX̂s,i+1
L , is given by substitution of Eqn. 21.58 into the right-hand-side of Eqn. 21.159

Y s,i
L,n ·Ψn = Gs,i

L,k ·
φs,i

k

λs,i
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·
[(
UT

k,j

)s,i · (ST
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)−1 · Ss,i
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j,k

]
·
(
1− φs,i

k

)
·∆Bs,i

k (0) (21.163)

Noting that the terms within the square brackets is equal to λs,i
k then

Y s,i
L,n ·Ψn = Gs,i

L,k · φs,i
k ·
(
1− φs,i

k

)
·∆Bs,i

k (0) (21.164)

Y s,i
L,n ·Ψn = Gs,i

L,k ·
(
1− φs,i

k

)
· φs,i

k ·∆Bs,i
k (0) (21.165)

Y s,i
L,n ·Ψn = Gs,i

L,k ·
(
1− φs,i

k

)
·∆Bs,i

k (21.166)

Well, that was fun. Seems a bit circular, eh. We know that the error in ∆Bs,i
k is δBs,i

k so that

Y s,i
L,n · δΨn = Gs,i

L,k ·
(
1− φs,i

k

)
· δBs,i

k (21.167)

and δBs,i
k = 1/

√
λs,i

k

Y s,i
L,n · δΨn = Gs,i

L,k ·
(
1− φs,i

k

)
· 1√

λs,i
k

(21.168)
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where, Gs,i
L,k is defined in Eqn. 21.39.

This may be an extra term required in the error equation.
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=
(
F s

L,j ⊗∆Âs
j · Us,i

j,k
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·
[
2
(
φs,i

k

)2

+ 2φs,i
k + 1

]
· 1
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(21.171)

φs,i
k

(
φs,i

k

)2

2
(
φs,i

k

)2

+ 2φs,i
k + 1

1.00 1.0000 1.000
0.75 0.5620 0.625
0.50 0.2500 0.500
0.25 0.0625 0.625
0.10 0.0100 0.820
0.05 0.0025 0.905

Given that φs,i
k is small when λ is small this can be a major component of the error.
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Chapter 22

Inter-comparison of Regularization
Methods

”I can’t say as I was ever lost, but once I was bewildered for three days.” Daniel Boone

22.1 Summary of Regularization Methods

Table 22.1: Summary of Regularization Methods
section method W H

13 Levenberg-Marquardt
14 Minimum variance CV (ε) CV (X)

14.3 Minimum information I γI
15.1 Linear Constrained I γI
16 Twomey’s 1st and 2nd derivatives I H
19 Maximum Likelihood CV (R) CV (X)
19 Maximum a posteriori (MAP) CV (R) CV (X)
20 Optimal Estimation CV (R) CV (X)

Maximum Entropy I γI
18 Backus-Gilbert G′

j , n = Fj,L · SL,n

22.2 History: A discussion on a-priori

The following is taken from Rodgers [1977]. It is a discussion at the end of his paper.

Chahine: Clive, you made a statement that we should pay just as much attention to our actual measurement
as we do to virtual measurements. I know how to improve my actual measurements. I have the physics. How
can I improve my virtual measurements and be sure of that?

Rodgers: By the same sort of techniques as your actual measurements. If you have no virtual measurements,
you just can’t solve the problem. You just have to go into some other problem. The only way of producing a
profile is by having enough virtual measurement from somewhere. It may be physics. I can produce a virtual
measurement off the top of my head immediately. I can say the temperature in the atmosphere is going to lie
between zero and 500◦. I know it’s not going to help very much; it reduces the variance a bit. It just makes
it non-infinite at least. But it still means the errors on all the points are going to be 250◦.

424
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year authors method of regularization
1943 Levenberg Steepest Descent & Newtonian Iteration
1963 Marquardt Hessian operator, H = ∆y · ∂2(yn−fn(XL))2

∂X2
L

1963 Twomey, Tikhonov H = λ · I, prevent singularities
≈ 1970 Twomey H minimizes vertical derivatives, e.g., ∂T/∂z

1970 Backus, Gilbert Compute Optimal Vertical Functions f/ sounding
1972 Conrath Trade-off: Vertical Resolution versus χ2 error

≈ 1970 Wark & Fleming Use H = covariance as a constraint
1976 Rodgers Use a posteriori PDF’s as a constraint, H = S−1

a

1989 Eyre Formalization of forward model errors in N−1
n,n

1992 Hanel, Conrath Optimal functions/vertical resolution by SVD
1992 Hansen L-curve, finding optimal λ via SVD
1996 Phalippou For q(p), use relative humidity as a constraint
1997 Schimpf & Schreier Use of SVD to determine H
1999 Li use residuals to derive λ
2000 Peckham & Grippa Use lapse rate as a constraint

Chahine: For the non-linear method, I assume the temperature to be positive and real. But in your case,
you are using a-priori statistics.

Rodgers: This isn’t only statistics. This applies to any kind of virtual measurement.

Chahine: Only real physical data should be used to judge virtual data. That’s because of the high variability
of the atmosphere and clouds. How can you be sure that the virtual measurements that you have now are
good tomorrow or are good in the presence of a front?

Rodgers: I don’t know. But in the method you describe [Chahine [1977]) you have virtual measurements
which you haven’t stated explicitly and this is your interpolation rule. That’s virtual measurement, which is
a very realistic one in fact.

Chahine: Not for temperature. Professor Kaplan might like to comment on the assumption of constant lapse
rate between two levels in the atmosphere.

Kaplan: That is assuming you know where the lapse rate changes. And anybody who has worked on recording
radiosonde measurement of temperature knows that the temperature can increase in the atmosphere in general
linear with height up to the point where the lapse rate changes. Of course, the lapse rade changes at arbitrary
levels and you have to be able to pick the point at which this comes in. I mean, there are assumptions. You
assume if you pick the height at which you attribute a frequency, measurements at a frequency, this is a point
at which the lapse rate changes or you fit it to a polynomial. But there are these constraints.

Rodgers: But you have got to recognize that it is a virtual measurement of some kind, with some variance.

Kaplan: Yes, and to the extent to which your vertical resolution gets worse as you get larger, this is more
and more an error. As you narrow your resolution this becomes less important.

Chahine: Have you done an analysis to determine how often you hit and how often you miss?

Rodgers: What do you mean?

Chahine: With your probability approach, how often do you end up with the correct answer in applying
your technique to real data.

Rodgers: Well, this doesn’t really apply. This is not really within the scope of what I was trying to describe.
I wasn’t going into techniques of how you find x̂, I was going into techniques of how you find Ŝ.

Chahine: I wanted to see, in applying the statistical approach to real data, how often you hit?
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Rodgers: You mean how good can your statistics be?

Chahine: Yes.

Rodgers: That’s another question which I haven’t really tried to touch on here. I know it is very difficult to
get a priori information. Statistics is only one way. But whatever your a priori information is, you have to
work as hard as you can.

Wark: Have you ever given any consideration to other aspects of the radiance field? Namely, that we usually
try to solve for profiles as though they existed as the only profile in nature and then we go on to another
set of radiances and try to solve them. In addition to this, we have gradients which exist in the radiance
field and these gradients are very strongly tied to the dynamics of the atmosphere. That is, the same set of
radiances in the same location at the same time of year can be associated with quite different profiles, mainly
because of the gradients which occur, which are the physical dynamical processes in the atmosphere.

Rodgers: This is why I have been recently getting interested in doing global analysis of radiances to try and
make an estimate of the global distribution rather than individual profiles.

Wark: But have you tried to associate this with the gradients in the temperature field?

Rodgers: Not yet. My feeling about analyzing meteorological data is that it should be the meteorological
analyst’s job, not ours. We shouldn’t go through this interface of profiles or anything like it. We should get
him good calibrated radiances. He’s already doing an inverse problem. He’s solving for the field of whatever
it is, given certain measurements of something different. Radiances are just another thing.

Wark : That’s right. We should be giving radiances to the meteorologists and let them inject them into
their analyses.

Chahine: What you are asking for is simultaneous solution of the radiative transfer equation and the
equations of motions. This is a great aim. It isn’t easy.

Wark: But I wanted to emphasize the point that the solution for profiles is not necessarily our aim here in
a meteorological sense.

Rodgers: Sure. There are lots of things you can get out of this stuff other than profiles.

Malchow: A bit of a detailed question about your Ŝ. In non-linear iterative processes, how is it supposed to
be handled? It seems to be unstable if it is iterated within the iterative process.

Rodgers: It certainly isn’t unstable. No.

Malchow: I was wondering if you had any experience with that problem?

Rodgers: Well, Ŝ is trying to find the small ellipsoid in Figure 1 here (see Figure 19.2). Intuitively, it is not
going to be unstable providing you have got the right kind of a priori information. If Ŝx is the wrong shape
compared with this cylinder, then perhaps Ŝ is going to stretch way up the cylinder. It is a matter of getting
the right information in and if you’ve got enough information, Ŝ is easy. If S is not easy, you haven’t got
enough information.

Deirmendjian: This is not a question, but just a comment. Since this is an interactive workshop, may I
interject some non-scientific thoughts about Dr. Rodgers’ introduction of the word “aesthetics.” I like it
because “aesthetics” derives from a Greek verb meaning “to percieve with the senses.” It is a scientist’s
prerogative to introduce – and to be governed a little by – aesthetics in his work. This implies things like
restraint, non-exaggeration, nonreliance on innumerable assumptions, criteria or data banks, and so on. I
would like to make an analogy, if I may, between sailing, about which I know some things, and the use of
mathematical inversion techniques, about which I know very little. Some people want us to use more and
more instruments and electronic gadgetry which are supposed to help us sail better, on the assumption that
we have no senses – seeing, hearing, sensory feeling – or judgment or “sea-sense.” A good sailor does use
all these things to advantage for a successful voyage. So, in analogy to this, I feel that sometimes we tend
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to resort to inversion techniques too blindly, without using our judgment or “feel” about handling a given
problem, which may lead to “anti-aesthetic” excesses.

22.2.1 References for Historical discussion

Chahine, M.T. 1977. Generalization of the relaxation method for the inverse solution of nonlinear and linear
transfer equations. in ”Inversion Methods in Atmospheric Remote Sounding” (ed. Adarsh Deepak p.1-20.

Conrath, B.J. 1977. Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles.
in “Inversion Methods in Atmospheric Remote Sounding (ed. Deepak) p.155-193.

Rodgers, C.D. 1977. Statistical principles of inversion theory. in ”Inversion Methods in Atmospheric Remote
Sounding (ed. Deepak) p.117- 138.



Chapter 23

Validation of Satellite Data

“I finally decided to get in touch with my feminine side; now I’ve got a yeast infection.”

23.1 Inter-comparison of Measurements, Validation of Measure-
ments

Deeter et al. 2003

23.2 References

Deeter, M.N., et al., Evaluation of operational radiances for the Measurements of Pollution in the Troposphere
(MOPITT) instrument CO thermal-band channels, J. Geophys. Res., 109(D3), D03308, 10.1029/2003JD003970,
14 February 2004.
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Chapter 24

Instrument Error Specifications

24.1 Random Measurement Error

24.1.1 How noise is measured in orbit

24.1.2 Example of a Instrument Noise Model

This is a summary of the interferometer noise model developed by George Aumann at JPL utilizing equations
in “Remote Sensing by Fourier Transform Spectroscopy” by R. Beer, 1992, hence the name JPL noise model.
The ITS specifications are taken from Lincoln Laboratories (LL) ITS instrument documents, specifically

• Cafferty, Michael 1996. ITS noise model. Presentation to IPO on Dec. 4, 1996

• Mooney et al. 1995. Industry briefing on Lincoln Laboratory ITS risk reduction, Dec. 12, 1995

• Hearn, David 1995. MIT Lincoln Laboratory memorandum 96PM-GOES-0008, Aug. 18, 1995.

• Mooney et al. 1994. Project Report NOAA-7, “POES Advanced Sounder Study (Phase II).” Lincoln
Labs./NOAA, Mar. 17, 1994

• Mooney et al. 1993. POES High Resolution Sounder Study Final Report. Jan. 25, 1993.

• Smith et al. 1991. Interferometer Thermal Sounder (ITS) Feasibility Study Final Report to EUMET-
SAT. Dec. 20, 1991.

The instruments instantaneous field-of-view in radians in given by the footprint size (12.66 km) and the
orbital height (824 km).

Θifov =
12.66 km
824 km

= 15.365 milli− radians (24.1)

Ω =
π

4
Θ2

ifov = 1.854 · 10−4 steradians (24.2)

The diameter of the entrance aperture, D0,

D0 = 2.54 cm (24.3)

A0 =
π

4
D2

0 = 5.067 cm2 (24.4)

together these define the étendue of the instrument
429
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Figure 24.1: Illustration of the interferometer optical layout used in this noise analysis example
.

AΩ = A0 · Ω = 9.395 · 10−4 cm2 · steradian (24.5)

the effective surface area of the detector, A′
d, is the projection of the circular FOV onto the square detector,

which for ITS is given by

A′
d =

π

4
· (319µm)2 = 8 · 10−4 cm2 (24.6)

in addition, the optical path delay (OPD or L), the detector cutoff wavelength, λc, the detector thickness, Dd,
detector quantum efficiency (electrons/photon), ηqp, integration time, tint, and optical bandpass, νon ≤ ν ≤
νoff are specified. For ITS, the integration time, tint, is specified for a 3x3 array of detectors and assumes a
double sided interferogram. Lincoln Labs (Mooney et al., 1994) investigated the trade-off between a single
interferometer and a multiple interferometer (two mirrors on porch swing mechanism). The design discussed
here is the single interferometer design. The velocity of the mirror is given by the total distance divided by
the integration time

Vs =
L/2− (−L/2)

tint
=

L

tint
(24.7)

The angular distance between the individual detectors and the interferometers’ optical axis will cause a
significant change in the OPD of the instrument for ITS and must be corrected.

Table 24.1: ITS interferometer parameters
L tint Vs λc Dd Rd ηqp νon νoff

Band cm ms cm/s µm µm type ohm e−/photon cm−1 cm−1

1 0.8 155.70 5.1 15.5 8.0 PC 207.5 0.85 598 1180
2 0.4 78.35 8.6 12.0 PV 1.26 · 106 0.80 1180 2100
3 0.2 39.20 6.7 12.0 PV 5.03 · 107 0.80 2100 5000
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The noise is related to the total number of photons striking the detector per cm2 per steradian per second.
We will separate these into two components, the photons from the external scene, Nscene and all the photons
from the instrument itself, Nt. The photons from within the instrument will be consist of three categories
and will be discussed in turn.

Nt ≡ Noptics +Nreflect +Ncold.shield (24.8)

The optics contribute photons directly We have included the wavelength dependence (see Figure 1) of the
detector quantum efficiency, ηq(ν, νc), within the integral for convenience. The effective photon flux, given
in photons per cm2 per second is given as

Noptics =
15∑

i=1

εi ·

i−1∏

j=1

τi


 ·

νoff(i)∫
νon(i)

ηq(ν, νc) ·Nν(Ti) · dν (24.9)

where Nν , is the Planck function given in units of photons·cm−2·ster−1·s−1. The emissivity, εi, temperature,
Ti, and frequency limits νon(i), νoff (i) for component i must be specified from the instruments model. For
ITS Band.1 the values are given in Table 24.2. Items 1-7 of Table 24.2 are within the cold dewar. Refer to
figures on page 47,49 of ITS/IPO Dec. 1995 briefing notes for overall layout and cold box optics and page
45 for the beam-splitter layout (attached at end).

Figure 24.2: The value of quantum efficiency used in this example

• The beam-splitter emissivity is set to 6.2% versus the 5% value originally used by Lincoln Labs (LL).
If the beam-splitter scattering is considered this term should probably have a larger effective value

• dewar window at 290 K and scan mirror at 290 K were omitted from Lincoln Laboratories model. The
values of transmissivity (0.8) emissivity (0.05) and reflectivity (0.15) are from the AIRS dewar window
build by OCLI. AIRS struggled to get window transmissivity of 74% at 15.4 µm with OCLI.

• beam-splitter reflection is NOT included. AES assumed the beam-splitter would “see” the cold detector
baffles and therefore ignored this term; however, reality was that they saw the interferometer optics
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Table 24.2: definition of component parameters for ITS Band 1
i item τi εi Ti νon νoff

1 FPA detector 1.000 0.000 90.0 643.1 5000.0
2 L3: f/0.8 micro lens 0.800 0.200 90.0 643.1 5000.0
3 L2: Field Lens 0.900 0.100 170.0 643.1 5000.0
4 M5: Cold Mirror 0.950 0.050 170.0 643.1 5000.0
5 L1: imaging lens 0.900 0.100 170.0 643.1 5000.0
6 BS4: SW/MW Dichroic 1.000 0.000 170.0 643.1 5000.0
7 BS3: LW/MW-SW Dichroic 0.850 0.150 170.0 598.0 1182.5
8 W1: Dewar Window 0.800 0.200 220.0 598.0 1182.5
9 BS1: IF Beamsplitter 0.938 0.062 290.0 598.0 1182.5

10 BS2: IF Compensator 1.000 0.000 290.0 598.0 1182.5
11 M4: IF Fold Mirror 0.950 0.050 290.0 598.0 1182.5
12 BS2: IF Compensator 1.000 0.000 290.0 598.0 1182.5
13 BS1: IF Beamsplitter 0.44 · τ9 0.062 290.0 598.0 1182.5
14 M2: N/S Scan Mirror 0.950 0.050 300.0 598.0 1182.5
15 M1: E/W Scan Mirror 0.950 0.050 300.0 598.0 1182.5

(Dr. Rider, AES). The ITS beam-splitter reflectivity is 0.63 and would increase the band 1 estimate
by a factor of 4.

• The temperatures and emissivities of the other components are the same values as those used by LL.

• For Band 2 and 3 the transmissivity of the SW/MW dichroic must be included, the value used is
τ6 = 0.9.

Table 24.3: definition of component parameters for ITS Band 2
i item τi εi Ti νon νoff

1 FPA detector 1.000 0.000 90.0 1166.9 5000.0
2 L3: f/0.8 micro lens 0.800 0.200 90.0 1166.9 5000.0
3 L2: Field Lens 0.900 0.100 170.0 1166.9 5000.0
4 M5: Cold Mirror 1.000 0.000 170.0 1166.9 5000.0
5 L1: imaging lens 1.000 0.000 170.0 1166.9 5000.0
6 BS4: SW/MW Dichroic 0.900 0.100 170.0 1166.9 5000.0
7 BS3: LW/MW-SW Dichroic 0.850 0.150 170.0 1180.0 2100.0
8 W1: Dewar Window 0.900 0.100 220.0 1180.0 2100.0
9 BS1: IF Beamsplitter 0.938 0.062 290.0 1180.0 2100.0

10 BS2: IF Compensator 1.000 0.000 290.0 1180.0 2100.0
11 M4: IF Fold Mirror 0.950 0.050 290.0 1180.0 2100.0
12 BS2: IF Compensator 0.950 0.050 290.0 1180.0 2100.0
13 BS1: IF Beamsplitter 0.46 · τ9 0.062 290.0 1180.0 2100.0
14 M2: N/S Scan Mirror 0.950 0.050 300.0 1180.0 2100.0
15 M1: E/W Scan Mirror 0.950 0.050 300.0 1180.0 2100.0

reflected radiation , Nreflect

The reflection of radiation from some of the components is also included in the model.
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Table 24.4: definition of component parameters for ITS Band 3
i item τi εi Ti νon νoff

1 FPA detector 1.000 0.000 90.0 1488.1 5000.0
2 L3: f/0.8 micro lens 0.800 0.200 90.0 1488.1 5000.0
3 L2: Field Lens 0.900 0.100 170.0 1488.1 5000.0
4 M5: Cold Mirror 0.950 0.050 170.0 1488.1 5000.0
5 L1: imaging lens 0.900 0.100 170.0 1488.1 5000.0
6 BS4: SW/MW Dichroic 0.900 0.100 170.0 1488.1 5000.0
7 BS3: LW/MW-SW Dichroic 0.900 0.100 170.0 2100.0 5000.0
8 W1: Dewar Window 0.850 0.150 220.0 2100.0 5000.0
9 BS1: IF Beamsplitter 0.938 0.062 290.0 2100.0 5000.0

10 BS2: IF Compensator 1.000 0.000 290.0 2100.0 5000.0
11 M4: IF Fold Mirror 0.950 0.050 290.0 2100.0 5000.0
12 BS2: IF Compensator 1.000 0.000 290.0 2100.0 5000.0
13 BS1: IF Beamsplitter 0.46 · τ9 0.062 290.0 2100.0 5000.0
14 M2: N/S Scan Mirror 0.950 0.050 300.0 2100.0 5000.0
15 M1: E/W Scan Mirror 0.950 0.050 300.0 2100.0 5000.0

Nreflect = τint · τd ·
∑

j


εj · τj

νoff (band)∫
νon(band)

ηq(ν, νc)Nν(Tj)


 (24.10)

where τd ≡
2∏

i=1

τi is the transmittance of the detector optics, τint =
13∏

i=9

τi is the transmittance of the

interferometer, and τj is given below. τj is calculated from the dewar window transmittance, τw ≡ τ8 and

the aft optics transmittance, τa ≡
7∏

i=3

τi

definition of reflection parameters
j Reflection of Tj εj τj
1 Det. Optics Td=90 1− τd (τw · τa)2

2 Aft Optics Tao=170 1− τa τ2
w · τa

3 Dewar Window Tw=220 1− τw τw · τa

cold shield , Ncold.shield

The cold shield term is integrated from the detector cutoff frequency, νc = 10000/λc, to a maximum value
which is currently set to νm = 5000 cm−1

Ncold.shield =
(
π · A

′
d

AΩ
− 1
) 5000∫

νc

ηq(ν, νc) ·Nν(Td) · dν. (24.11)

Scene Radiance

The scene radiance is defined in terms of an effective scene temperature, Ts, as follows
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νoff (band)∫
νon(band)

Bν(Ts) · dν ≡
νoff (band)∫

νon(band)

Robs · dν (24.12)

The model is calculate for scene temperatures ranging from 190 to 300 K. In simulation, scene temperature
is usually in the range of 240 to 280 K and those results will be reported in Table 24.6 while the full range
of 190-300 K will be shown in the figures.

Nscene =

(
15∏

i=1

τi

)
·

νoff (band)∫
νon(band)

ηq(ν, νc) ·Nν(Ts) · dν (24.13)

Johnson noise

The electronic noise of the detector, often called Johnson noise for PC and PV detectors is given by

4 · k · Td

q2 ·Rd ·Ad
(24.14)

where q = 1.609 ·10−19 is the charge per electron given in coulombs (AMP·s) and Rd is the detector resistance
given in ohms (J·s−1·AMP−2), k = 1.381 · 10−23 is the Boltzmann constant (J·K−1), and Td is the detector
temperature in Kelvin. The units of this term are electrons per cm2 per second.

For the ITS interferometer the individual components contributed the following photon flux at the
detector (photons/cm2/s), where photon flux is given by

Q =
AΩ
A′

d

·N = 1.1744 ·N for D0 = 1 inch (24.15)

• The contribution from the warm beam-splitter is a significant component. The beam-splitter emissivity
of 6.2% is an optimistic value, given that scattering has been neglected.

• This model is scene dependent, as seen via comparison of the total of all terms to the scenes at 240
and 280 K (reasonable limits seen in Phillips simulations). In this model, the effect of sunlight in the
short-wave channels has been included only in the sense that is raises the effective scene temperature.

The noise is usually written in terms of the detectors’ value of responsivity, D∗, which is related to the square
root of the total number of photons striking the detector as well as electronic noise within the detector. D∗ is
given in units of cm·√Hz·W−1 (also called a Jones) and is the normalized signal-to-noise of a 1 cm2 detector,
that is the signal-to-noise in a 1 second integration of a 1 Watt signal.

D∗ =
ηqp · ηq(ν, νc)

h · c · ν
√

2 · fPC · ηqp · (Nscene +Nt) · AΩ
A′

d
+ 4·k·Td

q2·Rd·Ad

(24.16)

where fPC equals 2 for PC detectors (band 1) and 1 for PV detectors (bands 2 and 3) and Nt = Noptics +
Nreflect +Ncold.shield. For the photon limited case (bands 2 and 3) with a fixed scene

D∗ ∝
√
A′

d

AΩ
(24.17)

The value of responsivity due completely to external photons (i.e., for a perfect detector) is given by D∗
blip,

called the “background limit in performance”
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Table 24.5: Summary of components in this interferometer noise model
photon flux (1015 photons/cm2/s)

component band 1 band 2 band 3
FPA detector – – –

f/0.8 micro lens 0.01 – –
L2: Field Lens 1.95 0.060 0.0059

M5: Cold Mirror 0.78 – 0.0023
L1: imaging lens 1.41 – 0.0042

BS4: SW/MW Dichroic – 0.043 0.0040
BS3: LW/MW-SW Dichroic 1.93 0.061 –

W1: Dewar Window 12.01 0.498 0.0050
BS1: IF Beamsplitter 11.92 2.431 0.0704
BS2: IF Compensator – – –

M4: IF Fold Mirror 7.22 1.655 0.0452
BS2: IF Compensator – 1.655 –
BS1: IF Beamsplitter 8.50 1.949 0.0533
M2: N/S Scan Mirror 7.91 1.896 0.0633

M1: E/W Scan Mirror 3.26 0.818 0.0273
Det. reflection 0.001 – –

Aft Optics Reflect. 0.891 0.029 –
Dewar Mirror Reflect. 3.004 0.139 0.0015

cold shield 0.106 – –
Qoptics +Qreflect +Qcold.shield 60.90 11.23 0.283

Qscene(Ts = 190K) 5.9 0.31 0.00086
Qscene(Ts = 200K) 8.0 0.51 0.0020
Qscene(Ts = 220K) 13.6 1.26 0.0088
Qscene(Ts = 240K) 21.3 1.86 0.0306
Qscene(Ts = 260K) 31.3 5.14 0.0885
Qscene(Ts = 270K) 37.3 6.87 0.142
Qscene(Ts = 280K) 43.9 9.02 0.221
Qscene(Ts = 290K) 51.1 11.16 0.335
Qscene(Ts = 300K) 58.9 14.77 0.493

Johnson noise (1015 electrons/cm2/s) 292.0 0.048 0.0012

D∗
blip =

ηqp · ηq(ν, νc)

h · c · ν
√

2 · fPC · ηqp · (Nscene +Nt) · AΩ
A′

d

(24.18)

D∗ values ( cm·√Hz·W−1)
Band ν0 D∗

blip(Ts = 280) D∗(Ts = 190) D∗(Ts = 280) LL D∗(Ts =?) τt ηm

1 720 9.6 ·1010 4.85·1010 4.6·1010 6.5·1010 0.139 0.774
2 1315 1.7 ·1011 2.2·1011 1.7·1011 4.0·1011 0.163 0.774
3 2100 6.8 ·1011 9.0·1011 6.7·1011 12.·1011 0.147 0.774

• The single most significant difference between this model and the LL model is the value of D∗. The LL
value (Mooney et al. 1995 pg. 38) is closer to the theoretical limit for a detector at 90 K. Given that
the ITS uses a 3x3 detector array the values used in the JPL model for D∗ are considered to be more
realistic.

• Only band 1 PC detectors are sensitive to the internal detector noise. Thus in band 2 and band 3 the
value of D∗

blip � D∗. In Eqn. 24.16 this is caused by the high resistance of the PV detectors (see Table
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24.1, Rd).

Figure 24.3: The value of D* used in this example

The noise at the detector has the following sensitivity

• proportional to the optical path difference, L, which arises because the noise is inversely proportional
to the frequency sample interval, ∆ν = 1/(2 · L),

• inversely proportional to the square root of the total integration time

• proportional to the square root of the effective detector area,
√
A′

d

• proportional to the square root of photon flux, 1/D∗

• inversely proportional to the entrance aperture and solid angle product, item inversely proportional
to the total transmittance of the instrument, ηm · τt. The modulation efficiency, ηm, has a maximum
value equal to

ηm = 4 · τBS · ρBS = 2 · τ9 · τ13 (24.19)

Other factors, such as misalignment, optical aberrations, mirror surface defects and contamination can
cause ηm to be smaller, which makes the signal smaller and the noise larger.

NE∆N =
2 · L√
tint
·
√
A′

d

D∗ ·
1

AΩ · ηm · τt mW · ster−1 · cm−2/cm−1 (24.20)

The signal-to-noise is a function of the scene radiance and can also be written in terms of the effective scene
temperature, Ts defined in Eqn. 24.12. The later definition will be used in Table 24.6.
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SNR ≡ Robs

NE∆N
� Bν(Ts)

NE∆N
(24.21)

NE∆N is converted to NE∆T250 for convenience with the following equation

NE∆T250 = NE∆N ·
(
dBν(Tref )

dT

)−1

, Tref = 250 (24.22)

Other noise errors are added in the root sum square sense. For example, quantization noise arises from the
analog-to-digital converter having a finite resolution (ITS uses a 15 bit ADC, which has a dynamic range of
0-32767) of the interferogram signal. Assume a white noise level of 12 bits, then ∆ε =

√
1/12 = 0.289.

IP =
Nt +Nscene

Nscene
·

νoff∫
νon

Bν(Ts) · dν (24.23)

∆εx = 1.2 · IP · ∆ε
D

(24.24)

∆εσ =

√
L

νoff
·∆εx (24.25)

NE∆Nt =
√

NE∆N2 + ∆ε2σ (24.26)

The error in the central peak of the interferogram is spread over the frequency spectrum. This is included
in the JPL model and LL model; however, it is much less significant than the photon noise.
Some other noise sources included in the LL model are

• sampling error

NE∆N =
Bν(Ts) · V · (σV · δL+ σL) · ν3/2

4
√

∆ν
(24.27)

where, σV is the RMS of the mirror velocity fluctuation, expressed as a fraction (ITS design is 2%), δL
is the maximum delay error (ITS is 100 nano-sec), and σL is the delay jitter (ITS is 10 nano-sec)

• mirror alignment (tilt) error

• mirror velocity error

• analog filter aliasing
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Figure 24.4: Computed noise components, log scale

Figure 24.5: Computed noise components, linear scale
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Table 24.6: Table of Noise model computations
Ts=240 K Ts=280 K

λ ν NE∆N NE∆T SNR NE∆N NE∆T SNR
µm cm−1 mW/cm2/ster/s K mW/cm2/ster/s K

16.667 600.0 163.6 1.363 44.4 167.9 1.399 73.6
16.129 620.0 75.1 0.620 94.3 77.1 0.637 158.9
15.873 630.0 59.8 0.492 116.9 61.4 0.505 198.5
15.625 640.0 50.0 0.410 137.9 51.4 0.422 235.8
15.385 650.0 43.2 0.354 157.2 44.4 0.364 270.8
14.815 675.0 32.6 0.267 200.0 33.6 0.275 350.8
14.144 707.0 25.7 0.211 240.6 26.5 0.218 431.6
13.333 750.0 25.1 0.211 226.0 26.0 0.218 419.5
12.048 830.0 26.7 0.239 177.9 27.6 0.247 352.7
11.001 909.0 28.3 0.279 136.7 29.3 0.289 289.5
10.000 1000.0 30.8 0.352 96.8 31.8 0.363 221.4
9.132 1095.0 33.7 0.464 65.7 34.7 0.478 163.0
8.696 1150.0 35.4 0.550 52.1 36.4 0.566 135.6
8.403 1190.0 5.09 0.087 315.5 6.34 0.108 702.3
8.264 1210.0 4.57 0.082 328.1 5.72 0.103 738.3
8.000 1250.0 3.85 0.076 337.2 4.88 0.097 777.3
7.600 1315.8 3.38 0.080 302.4 4.29 0.101 734.4
7.200 1388.9 3.55 0.103 218.3 4.45 0.129 572.7
6.800 1470.6 3.75 0.138 150.5 4.64 0.171 428.5
6.400 1562.5 3.97 0.195 98.1 4.87 0.239 305.2
6.250 1600.0 4.07 0.225 82.2 4.97 0.275 264.9
6.098 1640.0 4.17 0.263 68.0 5.08 0.320 227.3
4.762 2100.0 0.627 0.208 60.3 0.807 0.267 282.5
4.600 2173.9 0.649 0.286 41.5 0.830 0.366 208.5
4.500 2222.2 0.663 0.354 32.5 0.846 0.451 170.6
4.450 2247.2 0.670 0.395 28.6 0.854 0.503 153.6
4.400 2272.7 0.678 0.442 25.1 0.863 0.563 137.9
4.350 2298.9 0.686 0.496 21.9 0.872 0.631 123.5
4.300 2325.6 0.694 0.559 19.1 0.881 0.711 110.3
4.250 2352.9 0.702 0.632 16.6 0.891 0.802 98.2
4.200 2380.9 0.710 0.716 14.4 0.901 0.909 87.1
4.150 2409.6 0.719 0.815 12.4 0.912 1.034 77.0
4.040 2475.2 0.738 1.097 8.8 0.936 1.391 58.1
3.922 2550.0 0.761 1.542 6.0 0.964 1.954 42.0
3.846 2600.0 0.775 1.940 4.6 0.982 2.458 33.8
3.774 2650.0 0.790 2.443 3.6 1.001 3.094 27.1
3.704 2700.0 0.805 3.079 2.7 1.020 3.900 21.8
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Chapter 25

Summary of Instruments Discussed in
this Text

”Those who cannot remember the past are condemned to repeat it.” - George Santayana (12/16/1863-
9/26/52), Spanish-American Philosopher

25.1 Summary of the AIRS Instrument

25.1.1 Focal Plane Arrays (FPA’s)

Table 25.1: Summary of the AIRS Focal Place Arrays
AIRS PDR focal plane

coverage FWHM # det.
FPA (cm−1) (cm−1) samp type
m1a 2674-2551 2.1 118 PV
m2a 2557-2433 2.1 116 PV
m1b 2433-2310 1.9 130 PV
m2b 2310-2169 1.9 150 PV
m4a 1613-1541 1.4 105 PV
m4b 1527-1460 1.3 105 PV
m3 1441-1337 1.1 192 PV

m4c 1339-1284 1.2 100 PV
m4d 1272-1217 1.1 100 PV
m5 1135-1055 1.02 159 PV
m6 1045- 973 0.88 167 PV
m7 973- 910 0.75 167 PV
m8 903- 851 0.66 161 PV
m9 852- 788 0.77 167 PV

m10 781- 727 0.66 167 PV
m11 728- 687 0.57 144 PC
m12 682- 649 0.51 130 PC

441
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Figure 25.1: AIRS post-launch instrument noise versus AIRS specification and pre-launch estimates
Quality of AIRS channels

measured per spectral sample (Nov. 1999)
163 0.00 ≤ NE∆T < 0.10
406 0.10 ≤ NE∆T < 0.15
487 0.15 ≤ NE∆T < 0.20
313 0.20 ≤ NE∆T < 0.25
354 0.25 ≤ NE∆T < 0.30
391 0.30 ≤ NE∆T < 0.50
37 0.50 ≤ NE∆T < 1.00
0 1.00 ≤ NE∆T < 100.00

227 are flagged as BAD

25.1.2 AIRS Instrument Noise

25.1.3 Details of the AIRS Scan Mechanism

A question arose at the AIRS Science Team meeting about the effect of the AIRS slant angle on the forward
calculation. This was precipitated by the discussion of the solar reflected component where an explicit
reference to the solar zenith angle, θ�, is used to modify the solar channel averaged radiance at normal
incidence, Hi, to that of the solar channel averaged radiance at the solar zenith angle

Ri ∝ cos(θ�) ·Hi (25.1)

It was suggested that the same kind of cos(θ) term exists for the surface and atmospheric radiance calculation
with respect to the spacecraft zenith angle, θ, and that curvature of the Earth’s surface might present an
error for off-nadir viewing. In this note we will look into the details of the radiance calculation for the off
nadir cases.
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The energy striking the detector is given by an integral over the entire footprint. We will define the
following coordinates

• the sub-spacecraft point is the point on the surface of the Earth where the spacecraft is directly overhead.
This is also referred to as the nadir scan angle.

• y is the distance from the sub-spacecraft point along the surface of the Earth in the direction of the
orbital track

• x is the distance from the sub-spacecraft point along the surface of the Earth in the direction perpen-
dicular to the orbital track.

• β is the platform scan angle, measured from nadir to the location on the surface at (x, y) ( (i.e., the
angle defined by the sub-spacecraft point, the spacecraft, and the location (x, y)).

• θ(x, y, β) is the angle between the local zenith (normal to the surface at (x, y)), the location (x, y) and
the spacecraft. It is a function of the position, (x, y) and the scan angle, β.

Operationally, the AIRS instrument controls the scan mirror with a torque motor and a 14 bit position
encoder (accuracy more like 12-bits). The scan angle is stepped by 360/214 = 0.0219727◦. Each individual
step is called an instantaneous field-of-view, IFOV, and the time-integrated sum of IFOV’s is called a field-
of-view, FOV. Over the course of the 1.1◦ scan the scan mirror is stepped ≈ 50 times. There are exactly 90
FOV’s in 2.0 seconds or 22.222 msec per FOV. The scan mirror moves from -49.5◦ to +49.5◦ in 2.0 seconds
or a total of 4505.6 steps (2252.8 Hz) , or ≈ 50 steps per FOV. The PC detectors are read 8 times (360 Hz)
per FOV and the PV detectors are read 16 times (720 Hz). Therefore, the PV detectors are read every 3.125
IFOV’s and the PC detectors are read every 6.25 IFOV’s. There is no time gap between FOV’s; however,
there is a few micro-second gap between every reading of the detector.

For an single IFOV the observation is made at a constant scan angle, β, and time-integrated for a cone
that is projected onto the Earth’s surface with a width of 1.1◦. Each area element on the surface, (δx, δy),
radiates to the detector through the solid angle of the detector, ΩD, which is given as a function of the
distance between the spacecraft (i.e., detector) and the surface,

ΩD(x, y, β) =
Ad

d2(x, y, β)
. (25.2)

The total energy striking the detector can be written as

ED(β) =
∫
x

∫
y

Ri(x, y, θ(x, y)) · ΩD(x, y, β) · cos(θ(x, y, β)) · dx · dy

= Ri(β) ·AD

∫
x

∫
y

cos(θ(x, y, β))
d2(x, y, β)

· dx · dy (25.3)

where Ri(x, y, θ(x, y)) is the channel radiance given in units of mWatt·cm−2·ster−1·cm−1 calculated along
the slant path θ(x, y) and cos(x, y, θ̄) is a projection factor of the area element as seen from the spacecraft.

In calibration, the total energy hitting the detector is converted to radiance. The energy is divided by
the area of the detector and the solid angle of the scene,

Ri(β) =
ED(β)

AD · ΩS(β)
. (25.4)

The solid angle of the IFOV’s scene, ΩS(β), is constant for the AIRS instrument with a value of

ΩS ≡ π ·
(

1.1◦

2
· π

180

)2

(25.5)
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it is also related to the effective area on the surface by

ΩS =
∫
x

∫
y

cos(θ(x, y, β)
d2(x, y, β)

· dx · dy � cos(θ̄) ·A(β)
d2(β)

(25.6)

which is exactly equal to the integral term in Eqn. 25.3. Therefore, the cos(θ) term does not enter into
the forward radiance calculation because the calibrated radiances have already accounted for the observation
geometry. In addition, the area intercepted by the solid angle of the observation is irrelevant for the forward
calculation of an IFOV. For IFOV’s which are not flat, the average angle, θ̄, must be representative for the
entire IFOV.

The AIRS FOV calibration is done on the time-integrated energy striking the detector, not on the
individual IFOV’s.

ED =
1
N

∑
β

ED(β) (25.7)

Ri =
ED

AD · ΩS

(25.8)

where the average solid angle of the scene is an effective solid angle accounting for the fact that there is
overlap between the individual IFOV’s. There is an effective area and an effective zenith angle. We can
rewrite Eqn. 25.6 and equate it to Eqn. 25.5. For the central IFOV we have the equivalence

ΩS � cos(θ(β)) ·A(β)
d2(β)

= π ·
(

1.1◦

2
· π

180

)2

= 2.895 · 10−4 steradian (25.9)

The area, A(β), and the distance, d(β), can be calculated for the central IFOV with the curvature of the
Earth effects included. If the footprint were flat the value of θ would be equal to the value at the center of
the IFOV; however, for a curved surface it is not. In general, the effective zenith angle is given by

θ̄(β) = arccos
(
d2(β)
A(β)

· 2.895 · 10−4

)
(25.10)

For radiance calculations in which the quadrature is done on isobaric levels the effect of the footprint
projection geometry is irrelevant. The area must be calculated correctly to convert detector signal into
radiance and the spacecraft nadir angle, θ, must be used in the forward calculation; however, there is not an
explicit cos(θ) term. This is because both the forward calculation and the measurement are both given per
unit area.

In the case of the projected area, A, we will first look at the flat Earth case and then look at the Earth
with curvature. For the flat Earth case, the slant angle, β, is equal to the angle between the local zenith and
the platform, θ. In Fig. 25.2 we show flat Earth calculation for the AIRS instrument at the orbital height
of 705 km and the maximum slant angle of 48.95◦. The distance between the platform and the surface is
d(β) = a/ cos(β) = 1073.5 for β = 48.95. The nadir IFOV is a 1.1◦ diameter circle which a projected circle
of 13.54 km diameter on the Earth.

At nadir projection of a circular IFOV with angular diameter σ is a circle with equal diameters in the
scan direction, X0, and the along track direction, Y0,

X0 = Y0 = a · 2 · sin(σ/2) (25.11)

The major and minor axes of the projected ellipse at the maximum slant angle, β, are

X = a · tan(β + σ/2)− a · tan(β − σ/2) (25.12)

Y =
a · 2 · tan(σ/2)

cos(β)
(25.13)
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Figure 25.2: AIRS scan geometry with flat Earth approximation

which can be reduced to

X =
a · sin(β + σ/2)
cos(β + σ/2)

− a · sin(β − σ/2)
cos(β − σ/2)

=
a · 2 · sin(σ/2) · cos(σ/2)

cos(β + σ/2) · cos(β − σ/2)

=
X0 · cos(σ/2)

cos(β + σ/2) · cos(β − σ/2)

=
X0 · cos(σ/2)

cos2(β)− sin2(σ/2)
(25.14)

Y =
Y0

cos(β) · cos(σ/2)
(25.15)

The area of a flat-Earth “facet” is given by

A =
4
π
·X · Y =

4
π
· X2

0

cos3(β)
(25.16)

The AIRS/EOS FOV at β = 48.95◦ is an ellipse of 20.61 by 31.39 km which is 1.523 by 2.319 times the nadir
footprint.

With the curvature of the Earth the situation is more complicated. The numerical solution of the problem
is shown in Fig. 25.3. Here the zenith angle, θ, is not equal to the slant angle β.

The angle θ in Fig. 25.3 can be found by the law of sines to be

sin(θ) =
Re + a

Re
sin(β) (25.17)

and the angle α is given by
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Figure 25.3: AIRS scan geometry with spherical Earth approximation

Table 25.2: AIRS footprint properties versus altitude
FOV @ FOV @

z p(z) Vg α · (Re + z) nadir β =48.95 θ
0 1013.25 6.754 882.4 13.5 22.4 x 41.0 56.88

10 264.99 6.765 868.5 13.3 22.0 x 40.2 56.74
20 55.29 6.776 854.6 13.2 21.7 x 39.4 56.60
30 11.97 6.786 840.8 13.0 21.3 x 38.7 56.47
40 2.87 6.797 827.0 12.8 21.0 x 37.9 56.33
50 0.80 6.807 813.3 12.6 20.7 x 37.1 56.20
60 0.22 6.818 799.7 12.4 20.3 x 36.4 56.07
70 0.05 6.829 786.1 12.2 20.0 x 35.7 55.94
80 0.01 6.839 772.6 12.0 19.6 x 34.9 55.80

α = θ − β (25.18)

For the EOS orbit, the AIRS instrument’s footprint at the maximum scan angle is projected 61 km below
the nadir horizon. The footprint has an area that is 41.887% larger than the flat-Earth calculation. We can
approximate the footprint projection as a flat footprint “facet” at a greater distance, a′ = a+Re ·(1−cos(α)),
and tilted at a larger angle, θ = α+ β. Once α is known then the ratio of the distance is known

a′

a
=
a+Re · cos(α)

a
(25.19)

The footprint radius as a function of angle, φ, within the footprint (relative to the scan direction x
through the along track direction y) can be given as

r(φ) =
(a+Re · cos(α)) · tan(σ/2)

cos(β)
· cos(σ/2)
cos(θ · cos(φ) + σ/2)
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=
a′

a
· X0

2 · cos(β)
· 1
cos(θ · cos(φ) + σ/2)

(25.20)

We can generalize Eqns. 25.12 and 25.13 for the case where θ �= β

X = r(0◦)− r(180◦)

=
a′

a
· X0

2 · cos(β)
·
(

1
cos(θ · cos(φ) + σ/2)

− 1
cos(θ · cos(φ)− σ/2)

)

=
a′

a
· X0

cos(β)
· cos(θ) · cos(σ/2)
cos2(θ)− sin2(σ/2)

(25.21)

Y = r(90◦)− r(270◦) =
a′

a
· Y0

cos(β)
(25.22)

To first order, the effect of the curvature of the Earth can be represented by a flat facet in which

1. The spacecraft to surface distance has increased by a factor of a′/a = 1.08645 for both X and Y

2. the projection factor has increased from 1/ cos(48.95◦) to 1/ cos(56.877◦), which is a factor of 1.2016

The flat-facet area has increased in area by (a′/a)2 · cos(48.96)/ cos(56.877) = 41.834%. The extra 0.05% of
area in the numerical calculation is due to the increased area of the curved facet. A slight error is made is
assuming that θ at the center represents the average over the scene.

Vertically, the effective area intercepted at an altitude, z, is given by

A(z) =
d(x̄, ȳ, β)− z/ cos(θ)

d(x̄, ȳ, β)
·A(z = 0). (25.23)

The AIRS/AMSU effectively sounds to 1 mb level or 48 km. For a nadir observation the uppermost level
the area is reduced to 93.2% of the area at the surface; however, the change in area does not present any
problems since the area cancels.

In reality, the slant path through the region of atmosphere sampled at z = 50 km varies with height,

θ(z) = arcsin
(
Re + a

Re + z
sin(β)

)
. (25.24)

For the maximum scan angle, β = 48.95 at z = 50 km the value of theta = 56.2 versus 56.877 at z = 0. Also,
the area sampled is displaced by

δx(z) = Re · (θ(z)− θ(0)) (25.25)

toward the sub-spacecraft point, which for the maximum scan angle is 75 km or about 1.5 footprints.
Other complications for the AIRS operational code include

• a varies within the orbit.

• oblate Earth complicates the geometry as a function of latitude.

The AIRS 1.1◦ IFOV is continuously stepped during 1.1◦ scan comprising a FOV. In Fig. 25.4, a set of
51 IFOV’s are integrated to show the percentage of time the IFOV’s are sampling a region of the atmosphere.
In these figures an ideal circular iFOV is shown on the top and the AIRS spatially apodized aperture is shown
on the bottom. The footprints are also moving along track at 6.754 km/s within 0.02241 seconds and the
total along track motion is 0.15 km or about 0.01◦. This motion is included in the calculation; however, it
is barely visible. The first and final IFOV’s are shown as thick dotted lines within the figure. The central
IFOV extends in the scan angle direction to the 50% contour.
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Fig. 25.5 shows a cross-section of Fig. 25.4. In the upper panel the solid line is along the center of
the IFOV’s in the scan direction and then parallel to the center of the IFOV’s but displaced by 0.475◦. In
the lower panel a cross section is taken along the track direction. The dotted lines in both panels shows the
width of the central IFOV.

Since the “smearing” takes place along the scan line, and not along the track, there is more than 50% of
the energy within the central IFOV. In Fig. 25.6, the percentage of the total signal within a centered circle
in Fig. 25.4 is shown as a function of radius of that circle.

Table 25.3: % area within AIRS footprint (same as Fig. 5)
circular apodized

r/IFOV r(deg) r(km) @ a=705 km % area % area
0.100 0.110 1.35 x 1.35 0.96 0.81
0.200 0.220 2.71 x 2.71 3.75 3.22
0.300 0.330 4.06 x 4.06 8.30 7.32
0.400 0.440 5.41 x 5.41 14.31 13.00
0.500 0.550 6.77 x 6.77 21.67 20.31
0.600 0.660 8.12 x 8.12 30.16 29.11
0.700 0.770 9.48 x 9.48 39.43 39.11
0.800 0.880 10.83 x 10.83 49.15 50.08
0.900 0.990 12.18 x 12.18 59.03 61.88
1.000 1.100 13.54 x 13.54 68.23 72.97
1.100 1.210 13.54 x 14.89 75.54 81.30
1.200 1.320 13.54 x 16.24 81.61 87.78
1.300 1.430 13.54 x 17.60 86.60 92.65
1.400 1.540 13.54 x 18.95 90.71 96.20
1.500 1.650 13.54 x 20.30 93.93 98.48
1.600 1.760 13.54 x 21.66 96.38 99.62
1.700 1.870 13.54 x 23.01 98.13 99.97
1.800 1.980 13.54 x 24.36 99.26 100.0
1.900 2.090 13.54 x 25.72 99.83 100.0
2.000 2.200 13.54 x 27.07 100.0 100.0

It can be seen that 68.6% of the signal comes from a circular region equal to the central IFOV. The “footprint”
equal to 95% is given by an oval FOV with a ratio of 1 by 1.54 to the IFOV (roughly out to the 30% contour
in the scan direction).

Another issue is uniqueness of a FOV. The first FOV is completed with the rightmost IFOV. The next
FOV begins sampling with a IFOV that is one step to the right. In essence, the next FOV has the same
pattern as shown in Fig. 25.4 except it is shifted along the scan angle axis and the along track axis. The
contribution to the second FOV is shown in Fig. 25.7. Note the shift in the scan angle axis as well as the
subtle vertical shift due to the spacecraft orbital motion.

With the apodized AIRS IFOV (0.6◦ x 1.1◦) the FOV integration is more localized toward the center of
the FOV.

Fig. 25.4 is effectively the time-integration weighting function for FOV # 1, t1(x, y), and the integrated
energy for FOV #1 is proportional to

E1 ∝
∫
x

∫
y

R(x, y) · t1(x, y) · dx · dy (25.26)

Similarly, for FOV # 2, Fig. 25.7 has an integrated energy proportional to

E2 ∝
∫
x

∫
y

R(x, y) · t2(x, y) · dx · dy (25.27)
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The overlap between FOV # 1 and FOV # 2 is given by the correlation of these observations. The scenes
are the same within the overlap region between FOV # 1 and # 2 and the correlation factor between scenes
is given by

c1,2 =
100
E1

∫
x

∫
y

R(x, y) · t1(x, y) · t2(x, y) (25.28)

c2,1 =
100
E2

∫
x

∫
y

R(x, y) · t1(x, y) · t2(x, y) (25.29)

This is effectively multiplying Fig. 25.4 by Fig. 25.7. In general, c1,2 �= c2,1 because the radiances sampled
by FOV # 1 and FOV # 2 are not the same. For AIRS, the correlation (i.e., overlap) between neighboring
scan FOV’s is small.

The overlap between neighboring FOV’s in the along track direction requires knowledge of the orbital
motion. The orbital period in hours, torb, for a given in km is given by

torb =
2π · (a+Re)

3
2

G ·Me
= 2.76468 · 10−6 · (a+ 6378)

3
2 (25.30)

• Re = 6.378 · 108 cm

• G = 6.6 · 10−8 dyne·cm2·gm−2

• Me = 5.975 · 1027 gm

• g = 980.665 cm·s−1

and the ground velocity, Vg, in km/s, is given by

Vg =
2π ·Re

torb
=

4.0264 · 106

(a+ 6378)
3
2

(25.31)

For a=705 km the value of Vg is 6.754 km/s. In 8/3 seconds the AIRS sub-spacecraft point moves Vg·8/3
which is equal to 18.01 km and 705 km orbit. There is a substantial gap between nadir FOV’s in adjacent
scan lines. The ground velocity can also be represented in degrees per second, 360/torb, and for the EOS 705
km orbit is equal to 0.06067◦ per second. In a 1.1◦ scan, which takes 22.22 milli-seconds, the sub-spacecraft
point moves a total of 0.001348◦. The AIRS instrument can be rotated by arctan(0.001348/1.1) = 0.0702◦,
relative to the along track perpendicular, to compensate for the motion of the platform. For the flat Earth
approximation the angle at which along track overlap begins can be found be equating the IFOV size and
the along track motion between two adjacent scan lines:

a

cos(β0)
· 1.1

◦

2
· π

180◦
= Vg · 83 (25.32)

β0 = arccos
(
a

Vg
· 3
8
· 1.1

2
· π

180

)
= arccos

(
1.788 · 10−9 · a · (a+ 6378)

3
2

)
= 41.2◦ (25.33)

For the curved Earth model the value of β0 is given by

β0 = arccos
(
a′

Vg
· 3
8
· 1.1

2
· π

180

)
= arccos

(
1.788 · 10−9 · a′ · (a+ 6378)

3
2

)
= 39◦ (25.34)

The correlation of the final FOV in the along track direction direction is found numerically to be equal
to 5.5% for the 705 km EOS orbit.
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Table 25.4: AIRS orbital parameters and derived spatial correlation of FOV’s
item a = 705 km a = 833 km

X0 (km) 13.535 16.0
torb (hr) 1.648 1.693

Vg (km/s) 6.754 6.575
Vg · 8/3 (km) 18.01 17.535

ci,j along scan (circular) 12.36% 12.378%
ci,j along scan (apodized) 8.58%

β0 39◦ 23◦

ci,j along track (circular) 5.45% 15.1%
ci,j along track (apodized) 12.36%
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Figure 25.4: Contribution to FOV integration. Upper figure is for a circular FOV and the lower figure is for
an apodized IFOV (real aIRS)
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Figure 25.5: cross sections of Fig. 25.4 Top figure is a circular IFOV, and bottom panel is after spatial
apodization (real AIRS).
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Figure 25.6: Contribution to FOV integration: Top figure is a circular IFOV, and bottom panel is after
spatial apodization (real AIRS).
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Figure 25.7: contribution to FOV integration, FOV # 2. Top figure is a circular IFOV, and bottom panel is
after spatial apodization (real AIRS).
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Figure 25.8: contribution to FOV integration, FOV # 2. Top figure is a circular IFOV, bottom figure is after
spatial apodization
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Figure 25.9: Correlation of FOV’s for a=705 km at β = 48.95 in two adjacent scan lines. Top figure is a
circular IFOV, bottom figure is the spatially apodized AIRS iFOV
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Figure 25.10: Example of AIRS FOV’s at a=705 km

Figure 25.11: Example of hypothetical AIRS FOV’s at a = 833 km
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Table 25.5: FOV parameters for a = 705 km orbit, X0=13.535 km
footprint # β x a′ α θ(z = 0) X Y θ(z = 50) δx(z = 50)

1,90 48.95 882.37 765.94 7.927 56.877 40.99 22.39 56.200 -75.35
2,89 47.85 842.74 760.60 7.571 55.421 38.35 21.76 54.779 -71.39
3,88 46.75 805.59 755.81 7.237 53.987 36.03 21.18 53.378 -67.76
4,87 45.65 770.62 751.50 6.923 52.573 33.97 20.64 51.994 -64.40
5,86 44.55 737.59 747.60 6.626 51.176 32.13 20.14 50.625 -61.29
6,85 43.45 706.30 744.07 6.345 49.795 30.49 19.68 49.271 -58.38
7,84 42.35 676.57 740.85 6.078 48.428 29.01 19.25 47.928 -55.66
8,83 41.25 648.25 737.92 5.823 47.073 27.67 18.84 46.596 -53.10
9,82 40.15 621.20 735.23 5.580 45.730 26.46 18.47 45.275 -50.69

10,81 39.05 595.30 732.76 5.348 44.398 25.36 18.11 43.963 -48.40
11,80 37.95 570.46 730.49 5.125 43.075 24.35 17.78 42.659 -46.23
12,79 36.85 546.58 728.41 4.910 41.760 23.43 17.48 41.363 -44.16
13,78 35.75 523.58 726.48 4.703 40.453 22.59 17.19 40.075 -42.18
14,77 34.65 501.39 724.70 4.504 39.154 21.81 16.91 38.792 -40.29
15,76 33.55 479.94 723.05 4.311 37.861 21.10 16.66 37.516 -38.48
16,75 32.45 459.17 721.52 4.125 36.575 20.44 16.42 36.245 -36.73
17,74 31.35 439.04 720.10 3.944 35.294 19.84 16.19 34.979 -35.05
18,73 30.25 419.49 718.79 3.768 34.018 19.27 15.97 33.718 -33.43
19,72 29.15 400.48 717.57 3.598 32.748 18.76 15.77 32.461 -31.86
20,71 28.05 381.97 716.43 3.431 31.481 18.28 15.58 31.209 -30.34
21,70 26.95 363.92 715.38 3.269 30.219 17.83 15.41 29.960 -28.86
22,69 25.85 346.29 714.40 3.111 28.961 17.42 15.24 28.715 -27.42
23,68 24.75 329.07 713.49 2.956 27.706 17.04 15.08 27.472 -26.03
24,67 23.65 312.21 712.64 2.805 26.455 16.68 14.94 26.233 -24.66
25,66 22.55 295.69 711.85 2.656 25.206 16.36 14.80 24.997 -23.33
26,65 21.45 279.49 711.12 2.511 23.961 16.05 14.67 23.763 -22.03
27,64 20.35 263.58 710.45 2.368 22.718 15.77 14.55 22.531 -20.76
28,63 19.25 247.94 709.82 2.227 21.477 15.51 14.43 21.302 -19.51
29,62 18.15 232.55 709.24 2.089 20.239 15.27 14.33 20.075 -18.28
30,61 17.05 217.39 708.70 1.953 19.003 15.05 14.23 18.849 -17.08
31,60 15.95 202.44 708.21 1.819 17.769 14.85 14.14 17.626 -15.89
32,59 14.85 187.69 707.76 1.686 16.536 14.66 14.06 16.404 -14.72
33,58 13.75 173.11 707.35 1.555 15.305 14.50 13.98 15.183 -13.57
34,57 12.65 158.69 706.97 1.426 14.076 14.34 13.91 13.964 -12.44
35,56 11.55 144.42 706.64 1.297 12.847 14.20 13.85 12.746 -11.31
36,55 10.45 130.28 706.33 1.170 11.620 14.08 13.79 11.529 -10.20
37,54 9.35 116.26 706.06 1.044 10.394 13.97 13.74 10.313 -9.10
38,53 8.25 102.34 705.82 0.919 9.169 13.87 13.69 9.097 -8.01
39,52 7.15 88.52 705.61 0.795 7.945 13.79 13.65 7.883 -6.92
40,51 6.05 74.77 705.44 0.672 6.722 13.71 13.62 6.669 -5.85
41,50 4.95 61.09 705.29 0.549 5.499 13.65 13.59 5.456 -4.78
42,49 3.85 47.46 705.18 0.426 4.276 13.61 13.57 4.243 -3.71
43,48 2.75 33.87 705.09 0.304 3.054 13.57 13.55 3.030 -2.65
44,47 1.65 20.31 705.03 0.182 1.832 13.55 13.54 1.818 -1.59
45,46 0.55 6.77 705.00 0.061 0.611 13.54 13.54 0.606 -0.53
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Table 25.6: FOV parameters for a = 833 km orbit, X0=16.0 km
footprint # β x a′ α θ(z = 0) X Y θ(z = 50) δx(z = 50)

1,90 48.95 1062.97 921.37 9.549 58.499 51.56 26.94 57.779 -80.14
2,89 47.85 1013.28 913.32 9.103 56.953 47.93 26.13 56.274 -75.57
3,88 46.75 966.98 906.16 8.687 55.437 44.77 25.39 54.795 -71.43
4,87 45.65 923.64 899.76 8.297 53.947 42.00 24.71 53.340 -67.66
5,86 44.55 882.89 894.01 7.931 52.481 39.55 24.08 51.905 -64.19
6,85 43.45 844.45 888.82 7.586 51.036 37.39 23.50 50.488 -60.98
7,84 42.35 808.06 884.12 7.259 49.609 35.45 22.97 49.088 -58.00
8,83 41.25 773.50 879.85 6.949 48.199 33.71 22.47 47.703 -55.22
9,82 40.15 740.59 875.95 6.653 46.803 32.15 22.00 46.330 -52.61

10,81 39.05 709.17 872.39 6.371 45.421 30.73 21.57 44.970 -50.15
11,80 37.95 679.09 869.12 6.101 44.051 29.44 21.16 43.621 -47.82
12,79 36.85 650.24 866.12 5.841 42.691 28.27 20.78 42.282 -45.62
13,78 35.75 622.51 863.36 5.592 41.342 27.21 20.42 40.951 -43.52
14,77 34.65 595.81 860.81 5.352 40.002 26.23 20.09 39.629 -41.52
15,76 33.55 570.04 858.46 5.121 38.671 25.33 19.78 38.315 -39.61
16,75 32.45 545.13 856.28 4.897 37.347 24.51 19.48 37.008 -37.77
17,74 31.35 521.00 854.27 4.680 36.030 23.75 19.20 35.707 -36.01
18,73 30.25 497.61 852.40 4.470 34.720 23.05 18.94 34.412 -34.31
19,72 29.15 474.89 850.67 4.266 33.416 22.41 18.70 33.123 -32.68
20,71 28.05 452.79 849.07 4.068 32.118 21.81 18.47 31.838 -31.09
21,70 26.95 431.26 847.57 3.874 30.824 21.26 18.25 30.559 -29.56
22,69 25.85 410.26 846.19 3.685 29.535 20.75 18.05 29.283 -28.07
23,68 24.75 389.75 844.90 3.501 28.251 20.28 17.86 28.012 -26.63
24,67 23.65 369.69 843.71 3.321 26.971 19.84 17.68 26.745 -25.22
25,66 22.55 350.06 842.60 3.145 25.695 19.44 17.52 25.480 -23.85
26,65 21.45 330.81 841.58 2.972 24.422 19.07 17.36 24.220 -22.51
27,64 20.35 311.92 840.63 2.802 23.152 18.72 17.21 22.962 -21.20
28,63 19.25 293.36 839.75 2.635 21.885 18.40 17.08 21.706 -19.92
29,62 18.15 275.10 838.93 2.471 20.621 18.11 16.95 20.454 -18.66
30,61 17.05 257.13 838.18 2.310 19.360 17.84 16.83 19.203 -17.42
31,60 15.95 239.41 837.49 2.151 18.101 17.59 16.72 17.955 -16.21
32,59 14.85 221.93 836.86 1.994 16.844 17.37 16.62 16.709 -15.01
33,58 13.75 204.67 836.28 1.839 15.589 17.16 16.53 15.464 -13.84
34,57 12.65 187.61 835.76 1.685 14.335 16.97 16.44 14.221 -12.68
35,56 11.55 170.72 835.28 1.534 13.084 16.80 16.37 12.980 -11.53
36,55 10.45 153.99 834.86 1.383 11.833 16.65 16.30 11.740 -10.39
37,54 9.35 137.41 834.48 1.234 10.584 16.52 16.24 10.501 -9.27
38,53 8.25 120.95 834.15 1.087 9.337 16.40 16.18 9.263 -8.16
39,52 7.15 104.61 833.86 0.940 8.090 16.30 16.13 8.026 -7.05
40,51 6.05 88.35 833.61 0.794 6.844 16.21 16.09 6.790 -5.95
41,50 4.95 72.18 833.41 0.648 5.598 16.14 16.06 5.555 -4.86
42,49 3.85 56.08 833.25 0.504 4.354 16.08 16.03 4.320 -3.78
43,48 2.75 40.02 833.13 0.359 3.109 16.04 16.01 3.085 -2.70
44,47 1.65 24.00 833.05 0.216 1.866 16.01 16.00 1.851 -1.62
45,46 0.55 8.00 833.00 0.072 0.622 15.99 15.99 0.617 -0.54
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25.1.4 E-mail exchange on AIRS Scan Mechanism

Date: Wed, 19 Mar 1997 11:44:07 -0800 (PST)
From: George Aumann <hha@williwaw.jpl.nasa.gov>
To: Chris Barnet <cbarnet@spectra.gsfc.nasa.gov>
Cc: Moustafa Chahine <chahine@jpl.nasa.gov>,

joel Susskind <f41js@piraino.gsfc.nasa.gov>,
schindler@williwaw.jpl.nasa.gov,
george aumann <hha@williwaw.jpl.nasa.gov>

Subject: AIRS scan pattern

Chris, some answers regarding the AIRS scan pattern on the ground.

Too bad that this issue of footprints is still bogging us down. To
show the real effect, you need to convolve the AIRS footprint with a
hypothetical cloud distribution. Since the AIRS uses cloud
elimination, blurring of cloud boundaries is irrelevant. For a clear
footprint hunter, it is relevant.

Talking about cloud patterns, the more interesting issue to discuss in
this regard is the need for 1-Cij<0.02. This requirement is not easy
to meet, even with AIRS, which has a field-of-view defining aperture
common to all wavelengths. It is a much tougher requirement for the
ITS (and IASI) with the footprint on the ground defined by three
separate masks. Make sure that this requirement on the instrument
does not get conveniently forgotten in the NPOESS specifications. To
me this issue is much more important than to argue about 8km or 12km
at nadir, expanding to 20km and 30km at 50 degree slant path.

> George,
>
> I am working on a internal memo about the shape of the AIRS footprint
> and overlap between footprints. I have a program that simulates the
> effect of the scanning motion on the footprint and I need some details
> about the actual mechanism.
> 1) I understand that the scan mirror is a stepping motor. Over the
> integration of a field of view how many steps are there?

No, the AIRS scan mirror uses a torque motor, which is controlled by
a position encoder, which encodes the scan mirror position to 14 bits
precision (accuracy is more like 12 bits). Therefore, the steps are
360 degree/2^14 = 0.022 degrees each.

> 2) What is the total integration time? I read somewhere that a scan
> takes 2.6675 seconds and each FOV is integrated for 0.02241 sec.
> Is this correct?

There are exactly 90 footprints in 2.0 seconds, i.e. 22.222 msec/footprint.
The actual situation is more complicated, because the internal sampling
rate for the PC detectors is a factor 8, for the PV a factor 16
faster, i.e. the PV detectors are sampled at 1/22.222*16 = 720 Hz.

> 3) #2 implies that there is 0.0072 seconds between FOV’s. Is
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> this correct. This value is critical because it lowers the overlap
> between FOV’s.

There is no intentional gap between footprints. There is a few micro-second
gap between the samples at 720 Hz.

> Chris

George Aumann
phone (818) 354 6865
Jet Propulsion Laboratory M.S. 233-300
4800 Oak Grove Drive
Pasadena, CA 91109

--------------------------------------------------------------------------

Date: Thu, 20 Mar 1997 10:52:41 -0800
From: hha@williwaw.jpl.nasa.gov (George Aumann)
To: cbarnet@spectra.gsfc.nasa.gov
Subject: Re: thanks
Status: RO

1. In the IPO specification of the CrIS, section 3.2.1.30.6 the FOV
Alignment is specified as "The centroid of the FOV of all detectors with
the same nominal FOV location shall fall in a circle with a diameter of
3%(TBR) of the geometric FOV." This is a much less stringent condition
than was imposed on HIRS/2 and AIRS, each of which use the Cij definition
cooked up by David Wark. The Cij definition includes the effect of sidelobes
in the FOV. Due to diffraction and vignetting sidelobes can be appreciable,
and are a problem for AIRS. We estimate that Cij=0.97, but the centroid
alignment is 0.0015*FOV. This may be something to point out next time
the argument regarding beam size comes up.

hha

From To:hha@williwaw.jpl.nasa.gov Thu Mar 20 13:39:07 1997
Date: Thu, 20 Mar 1997 13:39:07 EST
To: hha@williwaw.jpl.nasa.gov (George Aumann)
Subject: Re: thanks

>
> Your calculation presumes that the FOV is uniform. If there are clouds in the
> FOV, then the numbers come out different, depending on the wavelength. This
> is probably what people who are hunting for clear spots are concerned about.

OK, I concede. Your point about C_ij is well taken. I had to go
through the math to understand exactly what was happening. Now I see
the effect of the time weighted radiance. I still think it is
important to show we have a small percentage of time-integrated
overlap, which is a contrast issue for cloud clearing. I agree that
clouds will change the value or overlap, but I see the issue as to
whether we are sensitive, and therefore able to remove the effects of
the clouds. 1-C_ij < 0.02 allows multi-spectral cloud clearing with
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spectrally independent eta’s for each IFOV, and therefore, the
integrated FOV.

Chris

From To:aumann Wed Mar 19 15:23:12 1997
Date: Wed, 19 Mar 1997 15:23:12 EST
To: hha@airs1.jpl.nasa.gov (H.H. George Aumann)
Subject: thanks

George,

Thanks for the info, it is exactly what I needed. Actually, the
calculation I am doing does not directly go to the spot size. I am
responding the the claim that the AIRS footprint is 30x15 km (for
NPOESS 833 km altitude). The footprint is elongated, but the
integration time at the edges is much less than the integration time
at the center. Therefore, I find that 68% of the energy comes from
the inner circular 15 km. 95% of the energy comes from an area
that is 15 x 23 km. Thus, the claim that the AIRS footprint is
really 15 x 30 is bogus. Also, the overlap for footprints, which
would reduce the cloud clearing contrast, I find to be on the
order of 12%, not the 30-50% claimed by some.

Chris

From To:aumann Tue Mar 18 13:51:54 1997
Date: Tue, 18 Mar 1997 13:51:54 EST
To: hha@airs1.jpl.nasa.gov (H.H. George Aumann)
Subject: AIRS footprint and sampling

George,

I am working on a internal memo about the shape of the AIRS footprint
and overlap between footprints. I have a program that simulates the
effect of the scanning motion on the footprint and I need some details
about the actual mechanism.

1) I understand that the scan mirror is a stepping motor. Over the
integration of a field of view how many steps are there?

2) What is the total integration time? I read somewhere that a scan
takes 2.6675 seconds and each FOV is integrated for 0.02241 sec.
Is this correct?

3) #2 implies that there is 0.0072 seconds between FOV’s. Is this
correct. This value is critical because it lowers the overlap
between FOV’s.

Chris
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25.2 AMSU-A

The AMSU-A’s instantaneous field of view (IFOV) is a 3.3◦ cone extending from the spacecraft to a spot
on the Earth. For AMSU-A in a 705 km polar orbit the spot is about 41 km in diameter at nadir. As
the instruments scans, the spot grows. At the maximum scan angle of 49◦ the zenith angle is 57◦ and the
footprint is 67 by 123 km centered 882 km (7.93◦) from the nadir point.

Table 25.7: AMSU-A, and AMSU-B frequencies and noise estimates
center frequencies width

chl (GHz) (GHz) NE∆Ta NE∆Tb usaged

1 23.8 ± 0.0725 0.125c 0.22 0.30 ε, q(100)
2 31.4 ± 0.050 0.080c 0.21 0.30 ε, q(500)
3 50.3 ± 0.050 0.080c 0.28 0.40 ε, Ts, q(300), LiQ
4 52.8 ± 0.105 0.190 0.20 0.25 T (1000)
5 53.5957 ± 0.115 0.170 0.20 0.25 T (700)
6 54.40 ± 0.105 0.190 0.24 0.25 T (400)
7 54.94 ± 0.105 0.190 0.26 0.25 T (250)
8 55.50 ± 0.0875 0.155 0.20 0.25 T (175)
9 ν0± 0.0875 0.155 0.35 0.25 T (90)

10 ν0± 0.217 0.078 0.31 0.40 T (50)
11 ν0 ±∆ν0 ± 0.048 0.036 0.36 0.40 T (22)
12 ν0 ±∆ν0 ± 0.022 0.016 0.49 0.60 T (11)
13 ν0 ±∆ν0 ± 0.010 0.008 0.64 0.80 T (6)
14 ν0 ±∆ν0 ± 0.045 0.003 1.01 1.20 T (3)
15 89.0 ± 1.0 1.0 0.56 0.50 ε, Ts, q(150), LiQ
16 89.0 ± 0.9 1.0 0.37 0.60 ε, Ts, q(150), LiQ
17 150.0 ± 0.9 1.0 0.84 0.60 ε, Ts, q(35), LiQ
18 183.31 ± 1.00 0.5 1.06 0.80 q(0.5)
19 183.31 ± 3.00 1.0 0.70 0.80 q(2.5)
20 183.31 ± 7.00 2.0 0.60 0.80 q(8)

• ν0 ≡ (ν11− + ν13−)/2 = 57.290344 and ∆ν0 ≡ (ν11− − ν13−)/2 = 0.3222

• ν11− = 57.612486, ν13− = 56.96818

a NE∆T’s for a specific AMSU-A instrument (Saunders et al. (1994)

b NE∆T’s used in AIRS Science Team AMSU simulation software.

c MIT software treats these channels as single bandpass by filling in central region.

d For T (p) channels the peak of the kernel function is given in millibars in parenthesis. For moisture
channels, q(WVB), the total water vapor burden (WVB) is given in kg/M2 which is also equal to the
total precipitable water in mm.

25.3 Summary of the Voyager IRIS Experiment

The Voyager infrared interferometer spectrometer (IRIS) is a Michelson interferometer. The raw data is an
interferogram and consists of a intense central peak (where all frequencies constructively add) and side-lobes.
A spectra is obtained by taking the Fourier transform of the interferogram.
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Figure 25.12: The Voyager IRIS interferometer

Table 25.8: Summary of the Voyager IRIS interferometer
Interferometer

spectral range 180 - 2500 cm−1 4 - 55 µm
apodized resolution 4.5 cm−1

IRIS field of view 0.25◦

NA field of view 0.43 x 0.43◦

Radiometer
spectral range 5,000-30,000 cm−1 0.33 - 2.0 µm

25.4 Fourier Transform Infrared (FTIR) instruments

25.4.1 Summary of Proposed FTIR’s

25.5 References

Hanel, R.A., B.J. Conrath, D.E. Jennings and R.E. Samuelson 1992. Exploration of the solar system by
infrared remote sensing. Cambridge Univ. Press 458 pgs.

Saunders, R.W., S.J. English and D.C. Jones 1994. AMSU-B a new tool for atmospheric research. SPIE
2313 p.98-107).
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Table 25.9: Summary of Encounters with the outer planets
Planet Craft Date Julian Ls
Jupiter Pioneer 10 12/ 3/73 2442019.5 1.4

Pioneer 11 12/ 2/74 2442383.5 33.9
Voyager I 3/ 5/79 2443937.5 170.4
Voyager II 7/ 9/79 2444063.5 180.4

Saturn Pioneer 11 9/ 1/79 2444117.5 354.1
Voyager I 11/12/80 2444555.5 8.9
Voyager II 8/25/81 2444841.5 18.4

Uranus Voyager II 1/24/86 2446454.5 271.3
Neptune Voyager II 8/25/89 2447753.5 243.3

• Date is the date of the closest approach.

• JD is the Julian date of the closest approach.

• Ls is the longitude of the Sun w.r.t. the vernal (spring) equinox.

Table 25.10: Summary of Existing Remote Sounding FTIR’s
name target A Lmax spectral range Tdet τint

AERI Earth ↑ 1.0 500-3300 168
ATMOS Earth (shuttle) 2.5 cm 48.0 500-4000 77K 2.2
CIRRIS Earth (shuttle) 1.0 360-4000 4K 10
CIRS Saturn 7/04 0.12/0.66/2.0 600-1400 80K 6.6/20/50
COBE/FIRAS Cosmic BB 5.85 1- 95 1.4K
HIS Earth (aircraft) 1.8 590-1080 6K 6

1.2 1080-1850
0.8 2000-2700

ADEOS/IMG Earth ↓ 10 10.0 500-2000 10
(11/96-6/97) 2000-2325 10

2325-3030 10
IRIS Planets 0.23 180-2500 200K 45.6
NAST-I Earth (aircraft) 1.9 in 2.0 685-2410 77K 0.78
MIPAS Earth ↓ 14 4- 15 µm 70 K 4
TES Mars 0.1/0.05 200-1600 300K 4.0/2.0

Table 25.11: Summary of Proposed Remote Sounding FTIR’s
name target A Lmax spectral range Tdet τint

TES(EOS) Earth ↓ 5 8.45/33.8 600- 900 65K 2/8
(2003) 5 8.45/33.8 820-1150 65K 2/8

5 8.45/33.8 1100-1950 65K 2/8
5 8.45/33.8 1900-3050 65K 2/8

GIFTS Earth ↓ 0.8 685-1130
(2004) 0.8 1650-2250

NPOESS/CrIS Earth ↓ 8 cm 0.8 620-1095 90K 0.157
(2006) 0.4 1210-1740

0.2 2155-2450
IASI Earth ↓ 2.0 645-1210 100K 0.150

(2006) 2.0 1210-2000
2.0 2000-2760



Chapter 26

Scattering

Tell the truth and run - Yugoslav proverb

26.1 Rayleigh Scattering: Optical Depth

Figure 26.1: Lord Rayleigh, Born: Nov. 12, 1842 (John William Strutt), Died: June 30, 1919. In 1871
explained why the sky is blue. In 1879 he wrote on traveling waves which led to the theory of solitons. In 1895
he discovered Argon (Nobel prize in 1904) (from http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians)

The average scattering cross section per particle is given by

σ(λ) =
128π5α2

3λ4
· 6 + 3δ
6− 7δ

(26.1)

α =
n− 1
2πN0

≈ n2 − 1
4πN0

, for n near unity (26.2)

where, n is the index of refraction, N0 is the number of molecules per unit volume at standard temperature
and pressure (i.e., conditions of index of refraction) , δ is the depolarization factor.

The optical depth can be related to the “thickness” of the atmosphere. If Z is the thickness in Km-amagats
then:

466
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τray(λ) =

z∫
0

N(z) · σ(λ)dz ≈ σ(λ) ·
z∫

0

N(z) · dz = Z ·N0 · σ(λ) (26.3)

The index of refraction has a wavelength dependence. This is usually represented by two constants, A and
B, as follows:

(n− 1) = A ·
(

1 +
B
λ2

)
, λ in µm (26.4)

(n− 1)2 = A2 ·
(

1 +
2B
λ2

+
B2

λ4

)
(26.5)

τray = Z
a0

λ4

(
1 +

a1

λ2
+
a2

λ4

)
where, a0 =

32π3

3N2
0

· 6 + 3δ
6− 7δ

·
n∑

i=1

qi ·A2, (26.6)

a1 =
n∑

i=1

qi · 2B, and a2 =
n∑

i=1

qi · B2 (26.7)

τray(H2) = Z · 2.19 · 10−4

λ4

(
1 +

0.0157248
λ2

+
0.0001978

λ4

)
, λ in µm (26.8)

The wavelength dependence in the VIAMP code is taken from Dalgarno and Williams (ApJ, 1962). This
equation is similar to the equation above, however, it differs in the λ8 term.

σray(H2) =
(

8.14 · 10−13

λ4
+

1.28 · 10−6

λ6
+

1.61
λ8

)
cm2, λ in A (26.9)

The optical depth per Km-amagat of hydrogen, denoted by τ1(H2), is then

τ1(H2) = 2.687 · 1024 · σray(H2) = 2.687
(

8.14 · 1011

λ4
+

1.28 · 1018

λ6
+

1.61 · 1024

λ8

)
, λ in A (26.10)

τ1(H2) = 2.687
(
8.14 · 10−21f4 + 1.28 · 10−30f6 + 1.61 · 10−40f8

)
, f =

108

λ
and λ in A (26.11)

And the total optical depth for a mixture of gases is given as

τray = τ1(H2) ·
∑

i

Zi · (ni − 1)2

(nH2 − 1)2
(26.12)

Note that this formulation always uses the wavelength dependence of hydrogen, even if other gases are used.

(n− 1) = A ·
(

1 +
B
λ2

)
, λ in µm (26.13)

ray =
(n− 1)2

(nH2 − 1)2
(26.14)

from Allen (pg. 92)
A B alpha a0

ray n (10^-5) (10^-3) (10^-24) delta um^4/Km
----- --------- ------- ------- -------- ------ -------

air 4.4459 1.0002918 28.71 5.67 3.40 0.031 10.7E-4
H2 1.0000 1.0001384 13.58 7.52 1.61 0.02 2.35E-4
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HE 0.0641 1.0000350 3.48 2.30
O2 3.8634 1.000272 26.63 5.07 0.054
N2 4.6035 1.000297 29.06 7.7 3.44 0.030 10.9E-4
H2O 3.3690 1.000254
CO2 10.5611 1.0004498 43.9 6.4 0.09
CO 5.8247 1.000334 32.7 8.1
NH3 7.3427 1.000375 37.0 12.0
NO 4.6035 1.000297 28.9 7.4
CH4 10.1509 1.000441

Figure 26.2: Pressure level at which Rayleigh Scattering is optically thick

The depth of penetration of Rayleigh scattering is computed for various objects using the data above. A
summary of the characteristics of the Rayleigh function are shown in the figure above and in the table below
(g is gravity in cm/s2, u = molecular weight in gm/mole, Z = KM-amagats per Bar).

Earth P0 = 1013.25, g= 981, u=28.97, Z=7.88
wave(um): 0.1000 0.2000 0.2640 0.3000 0.4000 0.5000
tau(P0): 209.57 6.95 2.05 1.19 0.36 0.14
P(tau=1): 4.8 145.7 493.2 851.0 2834.7 7094.5

Jupiter P0 = 1000.00, g=2425.3, u=2.22, Z=37.45/0.9
wave(um): 0.1000 0.2000 0.2640 0.3000 0.4000 0.5000
tau(P0): 299.82 8.62 2.47 1.42 0.42 0.17
P(tau=1): 3.3 116.1 405.2 706.3 2390.8 6030.4

Saturn P0 = 1000.00, g= 1000, u = 2.14, Z=100.5/0.96
wave(um): 0.1000 0.2000 0.2640 0.3000 0.4000 0.5000
tau(P0): 754.31 21.68 6.21 3.56 1.05 0.42
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P(tau=1): 1.3 46.1 161.0 280.7 950.3 2396.9

Titan P0 = 1500.00, g= 136, u= 28.0, Z=58.85
wave(um): 0.1000 0.2000 0.2640 0.3000 0.4000 0.5000
tau(P0): 5378.65 152.59 43.58 24.98 7.37 2.92
P(tau=1): 0.3 9.8 34.4 60.1 203.6 513.9

The gas continuum absorption contains a term which is supposed to represent the effect of Raman scattering
due to the ν1 vibration of H2 at 4161 cm−1. Ref.: Belton et al. (1971). Atm. of Uranus. ApJ. 164, 191-209

τraman = 0.0208 · τray (26.15)

26.2 Rayleigh Scattering: Phase Function

The angle between the incident flux and the local normal is given by α and µ0 ≡ cos(α). The angle
between the local normal and the observer is given by ε and µ ≡ cos(ε). The phase angle, θ, is the angle
between the incident and emission through the origin. The azimuthal angle, ∆ψ, is the projection of the solar
incidence and emission directions onto the local horizon. Using spherical trigonometry cosine laws (e.g., see
CRC pg. 146) we can easily obtain the value of ∆ψ) given µ0, µ, andθ. For solar scattering to an observer
above the atmosphere the angles are related by:

cos(θ) =
√

((1− µ2
0)(1− µ2)) · cos(∆ψ)∓ µµ0 (S = +, T = −) (26.16)

This is the method employed by Chandrasekar, Liou. and others. We could also write the equations in
terms of the scattering angles. The scattering angle between incidence and emission, Θ, which is related to
the phase function, is given by Θ = π − θ. The scattering angle in the horizontal plane, ∆φ is related to the
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azimuthal angle, and is given by ∆φ = π−∆ψ. This definition is used by Hansen, Tomasko, and Danielson.
It is the method employed within the VIAMP programs. Note the sign change between the two methods.

cos(Θ) =
√

((1− µ2
0)(1− µ2)) · cos(∆φ)± µµ0 (T = +, S = −) (26.17)

The Rayleigh phase function is given in terms of scattering angles or phase angles by

Pray(Θ) =
3
4
(1 + cos2(Θ)) =

3
4
(1 + cos2(θ)) = Pray(θ) (26.18)

The cos2 term can be expressed in terms of µ, µ0, and ∆φ as

cos2(Θ) = ((1− µ2
0)(1− µ2)) · cos2(∆φ)± 2µµ0

√
((1− µ2

0)(1− µ2)) · cos(∆φ) + µ2µ2
0 (26.19)

cos(2∆φ) = 2 cos2(φ)− 1 or, cos2(φ) = 1
2 cos(2∆φ) + 1

2

cos2(Θ) =
1
2
((1− µ2

0)(1− µ2)) · cos(2∆φ)±2µµ0

√
((1− µ2

0)(1− µ2)) · cos(∆φ)+µ2µ2
0 +

1
2
((1− µ2

0)(1− µ2))

(26.20)

So the Rayleigh phase function can be written in terms of 3 Fourier moments:

Pray(Θ) = P1 + P2 cos(∆φ) + P3 cos(2∆φ) (26.21)

where the 3 coefficients are equal to

P0 =
3
4
(1 + µ2µ2

0 +
1
2
((1− µ2

0)(1− µ2))) =
3
8
(3 + 3µ2µ2

0 − µ2
0 − µ2) (26.22)

P1 = ±3
2
µµ0

√
((1− µ2

0)(1− µ2)) (26.23)

(T = +, S = -)

P2 =
3
8
((1− µ2

0)(1− µ2)) (26.24)

26.3 Henyey-Greenstein Phase Function

A Henyey-Greenstein phase function is a parameterized phase function for light scattered by particles in the
atmosphere. The formula for scattering through angle Θ is given by;

P (Θ) =
(1− g2)

(1 + g2 − 2g ∗ cos(Θ))3/2
(26.25)

cos(Θ) =
√

((1− µ2
0)(1− µ2)) · cos(φ)± µµ0 (26.26)

In the case of a two term function, the formula is given by:

P (Θ) = f · P (g1,Θ) + (1− f) · P (g2,Θ) (26.27)

where g1, and g2 are the asymmetry factors.
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Table 26.1: Henyey-Greenstein parameters for Jupiter
(West at al. Icarus v.65 p.172)
g1 g2 f1 w0 τ P -range

haze 0.75 – 1.000 0.95 4.5 130-200
EqZ 4.5 330-430

Blue SEB 0.8 -.75 0.979 0.970 4.5 510-570
Red SEB 0.8 -.65 0.938 0.991
Blue StrZ 0.8 -.65 0.969 0.995 4.5 470-520
Red StrZ 0.8 -.70 0.938 0.997

Table 26.2: Henyey-Greenstein parameters for Saturn
(Tomasko + Doose Icarus v.58, pg. 16)

lat . color P0 g1 g2 f1 w0

7-11 Red 150 0.62 -0.294 0.763 0.986
7-11 Blue 150 0.72 -0.317 0.860 0.920
15-17 Red 150 0.603 -0.302 0.768 0.986
15-17 Blue 150 0.870 -0.116 0.764 0.920
15-17 Blue 290 0.824 -0.231 0.862 0.930

26.4 Particle Distribution Models

26.4.1 Hansen and Travis model

from Hansen and Travis(1974)
a = Reff = effective particle radius b = Veff = (0.-0.5)

η(r) = 10(1−3b)/b · e−r/ab (26.28)

Polyacetylenes with Reff = 0.5 and Veff = 0.2.

26.5 Single Scattering Albedo Models

26.5.1 Mie Scattering

ω0(r, λ) =
Qsca(r, λ,m)
Qext(r, λ,m)

, σ = Q · πr2 (26.29)

wherem is the complex index of refraction, m = mreal−i·mimag. Bothmreal andmimag are interpolated from
files denoted as “n-file” and “k-file” in this document. The imaginary file is stored internally as log10(mimag)
and the anti-log is taken after cubic spline interpolation. The energy is attenuated as exp(−2πmimagS/λ).

The cross section, σ is given in units of um2. In the program the user enter τ5000, which is the value of τ at
5000Å. The program calculates τ as follows:
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τ(λ) = τ5000 · σext(λ)
σext(5000Å)

(26.30)

The Mie scattering theory is summarized here.

x =
2πr
λ

(26.31)

Qsca =
2
x2

∞∑
n=1

(2n+ 1)(ana
∗
n + bnb

∗
n) (26.32)

Qext =
2
x2

∞∑
n=1

(2n+ 1)�(an + bn) (26.33)

The an and bn functions for Mie scattering are derived from Van de Hulst (1957, page 123).

an =
ψ′

n(mx) ψn(x)−mψn(mx) ψ′
n(x)

ψ′
n(mx) ζn(x)−mψn(mx) ζ ′n(x)

(26.34)

bn =
mψ′

n(mx) ψn(x)− ψn(mx) ψ′
n(x)

mψ′
n(mx) ζn(x)− ψn(mx) ζ ′n(x)

(26.35)

ψn(z) = z · jn(z) (26.36)

ζn(z) = z · h(2)
n (z), h(2)

n (z) = jn(z)− i · yn(z) (26.37)

Where, jn(z) is the spherical Bessel function of the first kind. Examples are:

jn(z) =
√

π

2z
Jn+1/2(z) = zn

(−1
x

d

dz

)n( sin(z)
z

)
(26.38)

j0(z) =
sin(z)
z

(26.39)

j1(z) =
sin(z)
z2

− cos(z)
z

(26.40)

yn(z) =
√

π

2z
Yn+1/2(z) = −zn

(−1
x

d

dz

)n(cos(z)
z

)
(26.41)

and yn(z) are the spherical Bessel functions of the second kind (Neumann function) and h(2)
n (z) is the spherical

Hankel function. The an and bn terms can be calculated from recursion relations (see Dave (1967)).

Dn(z) = −n
z

+
1

n
z −Dn−1(z)

(26.42)

α =
Dn(mx)

m
+
n

x
(26.43)

β = mDn(mx) +
n

x
(26.44)

an =
αψn(x)− ψn−1(x)
αζn(x)− ζn−1(x)

(26.45)

bn =
βψn(x)− ψn−1(x)
βζn(x)− ζn−1(x)

(26.46)
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26.5.2 Sato-Hansen empirical function

An empirical wavelength dependent single scattering albedo function to be used for Jovian haze was given in
Sato and Hansen (1979)

ω0(λ) =
1

1 + 10(−s1∗(λ−s2)/10000)
(26.47)

see Figure 6 for examples of the Sato-Hansen function.
Sato-Hansen Jovian value:
s1 = 6.4
s2 = 2656.25 (Eqn. 1.7 in Sato+Hansen (1979))
ω0(s2) = 0.5
ω0(λ << s2) = 1

(1+10s1∗s2/10000)
→ 0.0

ω0(λ >> s2) → 1.0

26.6 Doubling and Adding Code

In the scattering geometry figure in Section 26.2 we can compute the scattering angle, Θ, between and
inbound and outbound ray from the spherical (latitude, longitude) coordinates as follows:

cos(Θ) = − cos(θ) = − cos(i) · cos(ε) + sin(i) sin(ε) cos(∆φ) (26.48)

However, in general

cos(Θ) =
√

((1− µ2
0)(1− µ2)) · cos(∆φ)± µµ0 (26.49)

Where + for transmission and - for scattering.

Normalization of Phase functions. ∫
4π

P (Θ)dΩ ≡ 4π (26.50)

I(τ = 0, µ, µ0,∆φ) =
πF0ω0

4π
· P (µ, µ0,∆φ)

τ∫
0

e
−τ
(

1
µ + 1

µ0

)
dτ

µ
(26.51)

e
−τ
(

1
µ + 1

µ0

)
= e

−τ
(

µ0+µ

µµ0

)
(26.52)

I(τ = 0, µ, µ0,∆φ) =
F0ω0

4
· P (µ, µ0,∆φ)

τ∫
0

e
−τ
(

µ0+µ

µµ0

)
dτ

µ
(26.53)

I(τ = 0, µ, µ0,∆φ) =
F0ω0

4
· P (µ, µ0,∆φ) ·

(
µ0

µ0 + µ

)
·
[
1− e−τ

(
µ0+µ

µµ0

)]
(26.54)

I(τ = 0, µ, µ0,∆φ) = µ0 · F0 ·R(τ, µ, µ0,∆φ) (26.55)

R(τ, µ, µ0,∆φ) =
ω0

4(µ+ µ0)
P (µ, µ0,∆φ)

[
1− e−τ

(
µ0+µ

µµ0

)]
(26.56)

For a thin layer τ = τ0 << 1:
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e−τx ≈ 1− τ0 · x+
τ2
0x

2

2
(26.57)

R(τ, µ, µ0,∆φ) =
ω0τ0

4(µµ0)

[
1− τ

2

(
(µ0 + µ)
µµ0

)]
· P (µ, µ0,∆φ) (26.58)

similarly, for transmission

I(τ = 0,−µ, µ0,∆φ) = µ0 · F0 · T (τ, µ, µ0,∆φ) (26.59)

and for τ << 1

T (τ, µ, µ0,∆φ) = R(τ, µ, µ0,∆φ) (26.60)

Chandrasekar verses Van de Hulst notation:

Sc = R · 4µµ0 (26.61)

Tc = T · 4µµ0 (26.62)

I(τ = 0, µ, µ0,∆φ) = µ0 · F0 ·R(τ, µ, µ0,∆φ) =
F0

4µ
· S(τ, µ, µ0,∆φ) (26.63)

S(τ, µ, µ0,∆φ) = ω0τ0

[
1− τ

2

(
(µ0 + µ)
µµ0

)]
· P (µ, µ0,∆φ) (26.64)

The Phase function is expanded into Fourier moments, such that

P (µ, µ0,∆φ) =
Nm∑
m=1

Pm(µ, µ0) · cos(m ·∆φ) (26.65)

and

Sm(τ, µ, µ0) = ω0τ0

[
1− τ

2

(
(µ0 + µ)
µµ0

)]
· Pm(µ, µ0) (26.66)

For a homogeneous atmosphere the reciprocity theorem requires that the direction of incidence and emission
can be interchanged, thus

I(µ, µ0)
µ0

=
F0

4 · µ0
· S(µ, µ0)

µ
(26.67)

is equivalent to

I(µ0, µ)
µ

=
F0

4 · µ ·
S(µ0, µ)
µ0

(26.68)

therefore, the S matrix is symmetric:

S(µ, µ0) = S(µ0, µ) (26.69)

The optical depth, τ0, and the single scattering albedo, ω0 must be calculated for gaseous absorbers, τg,
aerosols which scatter light, τa · ωa, and absorb light, τa · (1− ωa), and Rayleigh scattering from gases, τr.
The extinction from all these processes is:

τ0 = τext = τa + τr + τg (26.70)

and the effective single scattering albedo of the layer is
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ω0 = 1− τabs

τext
=
τsca

τext
(26.71)

τsca = τr + τa · ωa τabs = τg + τa · (1− ωa) (26.72)

26.7 Calculation of Albedo from the model

Reflectivity, I/F , can be calculated directly from the Chandrasekar S function for a given geometry, µ, µ0,
and ∆φ (NOTE: the azimuthal angle calculated is equal to π −∆φ) as follows:

I/F (µ, µ0,∆φ) =
1
4µ

Nm∑
n=0

S(n, µ, µ0) · cos(n ·∆φ) =
1
4µ

Nm∑
n=0

(−1)n
S(n, µ, µ0) · cos(n ·∆ψ) (26.73)

and reflectivity is given as

ρ =
I/F

µ0
(26.74)

Then the center-to-limb variation of I/F for the special case of µ = µ0 and ∆φ = π (i.e., Θ = π, or θ = 0)
is given as

I/F (r) = −
Nm∑
m=1

(−1)m Sm(µ(r), µ(r))
4µ(r)

, where, µ(r) =

√
1−
(
r

Rp

)2

(26.75)

The hard part is interpolating withing the µ, µ0 grid. Figure 12 presents an example of the problem. The
top panel has 6 curves of the S(µ, µ0) function for each value of µ0. Also, shown is the curve for S(µ, µ0) for
the case µ = µ0 as a dotted line. In the second and third panel are the same functions for the second and
third moments, respectively. The final panel, is the absolute reflectively, I/F , for r = sin(cos−1(µ)). The
central meridian, r = 0 and limb, r = 1, is found by interpolation near µ = 1, and µ = 0, respectively, and
the errors tend to be large.
Geometric Albedo, Ag, is the reflectivity when µ = µ0 and ∆φ = π integrated over the entire disk.

Ag =
1
2
·

Nm∑
n=0

(−1)n ·
1∫

0

S(n, µ, µ)dµ (26.76)

Bond Albedo, is the reflectivity integrated over all phase angles. In this program it is approximated by
integrating over all µ and µ0 values for ∆φ = π.

Ab =
Nm∑
n=0

(−1)n ·
1∫

0

1∫
0

S(n, µ, µ0) dµ dµ0 (26.77)

Phase Integral

Φ = Ab/Ag (26.78)
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26.8 Calculation of Albedo from Planetary Data

HST flux files, F (λ), are given in units of ergs s−1 cm−2 Angstrom−1

NOTE: This can be derived from the count rate, η(λ), given in units of photons s−1 cm−2 Angstrom−1

F (λ) = h · c · η(λ)
λ

= 1.98648 · 10−8 · η(λ)
λ

, λ in Angstroms (26.79)

R = radius of planet in Km
ds = distance from Sun to planet in AU
de = distance from Earth to planet in AU. NOTE: 1 AU = 1.495979 · 108 Km

The area of the planet in square arcseconds is:

Ap = π · r2p, where rp =
180 · 3600 ·R
π · de ·AU (26.80)

If F0(λ) is the flux of the Sun at 1 AU, also given in units of ergs s−1 cm−2 Angstrom−1 and we define

Ω =
( π

3600 · 180

)2

= 2.3504432 · 10−11 steradians/square arcsecond (26.81)

If the area of the planet exceeds (overfills) the area of the instrument aperture, Ai then the conversion to
reflectivity is given as:

I/F =
π · F (λ)
Ω ·Ap

· d2
s

F0(λ)
, for Ap ≥ Ai (26.82)

If the area of the planet is less than the area of the instrument aperture, Ai, then the reflectivity is given as:

I/F =
π · F (λ)
Ω ·Ai

· d2
s

F0(λ)
, for Ap ≤ Ai (26.83)
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Appendix A

Summary of Useful Mathematical
Formula & Constants

”When I get a little money, I buy books, and if there is any left, I buy food and clothes”, Desiderius Erasmus
(1465-1536).

A.1 Trigonometric Identities

cos(α± β) = cos(α) cos(β)± sin(α) sin(β) (A.1)

sin(α± β) = sin(α) cos(β)∓ cos(α) sin(β) (A.2)

cos(mδ) cos(nδ) =
1
2
[cos((m− n)δ) + cos((m+ n)δ)] (A.3)

cos(αδ) cos(βδ) =
1
2
[cos((α− β)δ) + cos((α+ β)δ)] (A.4)

sin(α± jπ) = (−1)j · sin(α) (A.5)

A.2 Vector Mathematics

The gradient:

∇Ψ = m̂
∂Ψ
∂x

+ n̂
∂Ψ
∂y

(A.6)

1
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A.3 Useful Summations

∞∑
n=1

1
n2

=
π2

6
(A.7)

∞∑
n=1

(−1)n−1

n
= loge(2) (A.8)

limN→∞

(
N∑

n=1

1
n
− loge(N)

)
= γ = 0.5772 (A.9)

A.4 Derivatives & Integrals

y∫
0

loge(y) · dy = e−y · dy (A.10)

1
L

L∫
0

cos(aδ)dδ =
sin(aL)
aL

= sinc(y) CRC#291 (A.11)

b∫
a

dx

1 + 25 · x2
= 0.2 · [tan−1(5 · x)]b

a
(CRC26th Edition, Integral #62, pg. 293) (A.12)

2
L

L∫
0

cos(2πν0δ) cos(2πνδ)dδ =
sin(2πL(ν − ν0))

2πL(ν − ν0) +
sin(2πL(ν + ν0))

2πL(ν + ν0)
CRC#317 (A.13)

L∫
0

δ3 sin(aδ)dδ =
3a2L2 − 6

a4
sin(aL)− a2L3 − 6L

a3
cos(aL) CRC#391 (A.14)

L∫
0

δm sin(aδ)dδ =
−Lm

a
cos(aL) +

m

a

L∫
0

δm−1 cos(aδ)dδ CRC#392 (A.15)

L∫
0

δ3 cos(aδ)dδ =
3a2L2 − 6

a4
cos(aL) +

a2L3 − 6L
a3

sin(aL) CRC#395 (A.16)

1
L

L∫
0

(
δm

Lm

)
cos(aδ)dδ = sinc(aL)− 4

aLm+1

L∫
0

δm−1 sin(aδ)dδ CRC#396 (A.17)

recursive substitution of CRC# 392 into CRC# 396 will yield a general solution for the integral which has
the form of CRC# 396b.

1
L

L∫
0

(
δm

Lm

)
cos(aδ)dδ = b0(m) · sin(y) + b1(m) · cos(y) (A.18)
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1
a
·

∞∫
−∞

sin(ax)
x

dx =
π

a
CRC#621 (A.19)

∞∫
0

sin2(ax)
x2

dx =
aπ

2
CRC#630 (A.20)

A.5 MacLauren and Taylor Expansions

f(x) = f(a) + f ′(a) · (x− a) +
1
2!
f ′′(a) · (x− a)2 +

1
3!
f ′′′(a) · (x− a)3

+ . . . +
1

(n− 1)!
fn−1(a) · (x− a)n−1 +Rn (A.21)

where,

Rn =
xn · f (n)(θx)

n!
, 0 < θ < 1 (A.22)

The binomial expansion

1
1± x =

∞∑
n=0

(∓x)n � 1∓ x+ x2 + . . . for |x| < 1 (A.23)

1
(1± x)2 =

∞∑
n=0

(n+ 1) (∓x)n � 1∓ 2x+ 3x2 . . . for |x| < 1 (A.24)

In a MacLaurin series a = 0

ex =
∞∑

j=0

xj

j!
� 1 + x+

x2

2!
+
x3

3!
+ . . . (A.25)

sin(x) =
∞∑

j=0

(−1)j · x2j+1

(2j + 1)!
� x− x3

(3!
+
x5

5!
− x7

7!
+ . . . = x− x3

6
+

x5

120
− x7

5040
+ . . . (A.26)

cos(x) =
∞∑

j=0

(−1)j · x
2j

(2j)!
� 1− x2

2!
+
x4

4!
− x6

6!
+ ... = 1− x2

2
+
x4

20
− x6

720
+ ... (A.27)

loge(1 + x) = x− x2

2!
+
x3

3!
− x4

4!
+ . . . (A.28)

loge(a+ x) = loge(a) + 2
[

x

2a+ x
+

1
3

(
x

2a+ x

)3

+
1
5

(
x

2a+ x

)5

+ . . .

]
a > 0, −a < x < +∞ (A.29)

loge

(
1 + x

1− x
)

= 2
[
x+

x3

3
+
x5

5
+ . . .+

x2n−1

2n− 1

]
− 1 < x < 1 (A.30)

sinc(y) =
∞∑

j=0

(−1)j · y2j

(2j + 1)!
� 1− y2

6
+

y4

120
− y6

5, 040
+

y8

362, 880
− ... (A.31)
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sinh(x) =
ex − e−x

2
(A.32)

sinh(x) =
∞∑

j=0

x2j+1

(2j + 1)!
� x+

x3

3!
+
x5

5!
+
x7

7!
+ . . . (A.33)

sinh(ix) = i · sin(x) (A.34)

A.6 Linear Algebra

(A+B)′ = A′ +B′ (A.35)

(A ·B)′ = B′ ·A′ (CRC 26thEd. pg. 28, Eqn. 2.5) (A.36)

which can be extended ad infinitum

(A ·B · C)′ = ((A ·B) · C)′ = C ′ · (A ·B)′ = C ′ ·B′ ·A′ (A.37)

and

[A ·B · C]−1 = [C]−1 · [B]−1 · [A]−1 (CRC 26thEd. pg. 33, Eqn. 6.2) (A.38)

Given a linear set of equations where the number of equations, An,j , bn, is greater than the number of
parameters, xj

An,j · xj = bn (A.39)

xj = A−1
j,n · bn (A.40)

from the definition of an inverse

An,j ·A−1
j,n = In,n (A.41)

AT
j,n ·

(
An,j ·A−1

j,n

)
= AT

j,n · In,n (A.42)(
AT

j,n ·An,j

) ·A−1
j,n = AT

j,n (A.43)

for a non-square matrix

A−1
j,n =

[
AT

j,n ·An,j

]−1 ·AT
j,n (A.44)

The inverse of a compound matrix given by

M = M3 ·M2 ·M1 (A.45)

is given by the inverses taken in the opposite order:

M−1 = M−1
1 ·M−1

2 ·M−1
3 (A.46)

If the elements of a matrix Ym,n are functions of a scalar, x, then

∂Y

∂x
=
∂y(m,n)

∂x
(A.47)

If Y = U · V
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∂U · V
∂x

= V · ∂U
∂x

+ U · ∂V
∂x

(A.48)

If A �= f(x) then

∂A · Y
∂x

= A · ∂Y
∂x

(A.49)

∂AT · Y ·A
∂x

= AT · ∂Y
∂x
·A (A.50)

∂Y T ·A · Y
∂x

=
∂Y T

∂x
·A · Y + Y T ·A · ∂Y

∂x
(A.51)

A.7 Definitions and Constants
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Table A.1: Constants and Definitions

Definitions
symbol value units description
Pstd 1013.250 milli-bar = 103 dyne/cm2 Standard pressure
Tstd 273.150 K Standard temperature
gstd 980.665 cm/s Standard gravity
N0 Pstd/Tstd/k molecules/cm3/atm Loschmidt’s number
α1 2hc2 = 1.1910427 · 10−5 mW ·m−2 · steradian−1/cm−1 Planck Constant #1
α2 hc/k = 1.4387752 K/cm−1 * Planck Constant #2

Constants
symbol value units description
c 2.99792458E+10 cm/s speed of light
π 3.14159265359
k 1.3806503E-16 erg/K Boltzmann’s constant
h 6.62606876E-27 erg· s Planck’s constant
Na 6.02214199E+23 molecules/mole Avogadro’s number
σ = 5.67 ·10−5 erg/s/cm2/K4 Stephan Boltzmann constant
R∗ Na · k erg/mole/K universal gas constant
G 6.67 · 10−8 dyne cm2/gm2 Gravitational Constant
N0 2.686754 ·1019 molecules/cm3 Loschmidt’s number
AU 1.4960 ·1013 cm Astronomical Unit

Terrestrial Parameters
symbol value units description
Rd R∗/mwd erg/gm/K gas constant of dry air
cp 1.006 ·107 erg/gm/K specific heat of air
cv 0.718 ·107 erg/gm/K specific heat of air
γ cp/cv = 1.401 at stp
Req 6378.388 km Equatorial radius of the Earth
Rpl 6375 km Polar radius of the Earth
< R >Earth 6371.0 km Average Radius of Earth
D� 149.57E+11 cm distance to the sun
R� 0.6951E+11 cm radius of the sun
S0 1.37 · 106 erg/cm2 Solar constant
Me 5.975 · 1027 gm Mass of the Earth
mww 18.0151 gm/mole molecular weight of water
mwd 28.9644 gm/mole molecular weight of dry air
mwO3 47.9982 gm/mole molecular weight of ozone
mwCH4 16.04303 gm/mole molecular weight of methane
mwCO 28.0104 gm/mole molecular weight of CO
mwCO2 44.00995 gm/mole molecular weight of CO2

gs 980.665 cm/s Standard surface gravity
Ps 1.01325 ·106 dyne/cm2 Standard surface pressure

< R >Earth= (Req ·Req ·Rpl)
1/3 volume of oblate sphere (A.52)
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Table A.2: Conversion Factors

Conversions
1 knot 1 nautical mile/hour 1.151555 mile/hour 1.853248 Km/hr
1 megaton 4.2·1022 erg 4.2·1015 Joule
1 AU 1.495·108 Km’s 8.31 light minutes



Appendix B

Summary of Atmospheric Dynamics

My girlfriend has invited me over to her place three times. I feel pretty comfortable now, ’cause this time she
might be there.

B.1 Beta Plane Approximation

f = 2 · Ω · sin(ϕ) ≈ f0 + f ′ · ϕ (B.1)

β = f ′ =
2 · Ω · cos(ϕ)

R(ϕ)
= β0 · Req

R(ϕ)
· cos(ϕ), β0 ≡ 2Ω

Req
(B.2)

Table B.1: Beta plane models of the planets
ω f(45) f(60) f/fearth beta0

rad/s s−1 s−1 (cm· s)−1

Venus -2.9921e-07 -4.2314e-07 -4.2314e-07 -0.004103 -9.889e-16
Earth 7.2925e-05 1.0313e-04 1.0313e-04 1.000000 2.287e-13
Mars 7.0852e-05 1.0020e-04 1.0020e-04 0.971583 4.176e-13
Jupiter 1.7585e-04 2.4869e-04 2.4869e-04 2.411438 4.920e-14
Saturn 1.6378e-04 2.3163e-04 2.3163e-04 2.245949 5.435e-14
Uranus -1.0128e-04 -1.4323e-04 -1.4323e-04 -1.388781 -7.925e-14
Neptune 1.0834e-04 1.5321e-04 1.5321e-04 1.485620 8.730e-14
Titan 4.5608e-06 6.4500e-06 6.4500e-06 0.062541 3.542e-14

B.2 Brunt Vaisala or Buoyancy Frequency

N2 =
Rg

H(z)
·
[
dT0

dz
+
Rg

Cp

T0(z)
H(z)

]
=

Rg

H(z)
·
[
dT0

dz
+

g

Cp

]
=

Rg

H(z)
· σ (B.3)

where, T0(z) = T (z, ϕ, λ, t), i.e., temperature averaged over longitude λ, latitude ϕ, and time t. The static
stability, σ, is related to the buoyancy frequency as

σ ≡ dT0

dz
+

g

Cp
(B.4)

The static stability is positive for stable conditions and zero or negative for unstable conditions.

8
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B.3 Equations of motion

B.3.1 Momentum

d�V

dt
= −2Ω× �V − 1

ρ
∇P + k̂g + �F (B.5)

�V ≡ îu+ ĵv + k̂w (B.6)

du

dt
− 2Ωv sin(ϕ) =

−1
ρ

∂P

∂x
+
uv tan(ϕ)

a
− uw

a
− 2Ωw cos(ϕ) + Fx (B.7)

dv

dt
+ 2Ωu sin(ϕ) =

−1
ρ

∂P

∂y
− u2 tan(ϕ)

a
− vw

a
+ Fy (B.8)

dw

dt
− 2Ωu cos(ϕ) =

−1
ρ

∂P

∂z
+
u2 + v2

a
− g + Fz (B.9)

B.3.2 Continuity

1
ρ

dρ

dt
+ �∇ · �V = 0 (B.10)

when motions are on the order of a scale height or less

�∇ · (ρ0
�V ) = 0 (B.11)

B.3.3 Energy

q̇

T
= cp

d loge(Θ)
dt

=
cp
T

dT

dt
− Runiv

P

dP

dt
(B.12)

B.4 Geostrophic Approximation

horizontal motions are in balance with the pressure gradient force. Friction is negligible (i.e., far away from
surface). Steady flow with small curvature (i.e., dV/dt = 0 ). Works well for z ≥ 1 km, ϕ > 10◦.

−ρ · f · Vg =
∂P

∂x
(B.13)

ρ · f · Ug =
∂P

∂y
(B.14)
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B.5 Hurricanes

Tropical Classification
Gale force winds (> 15 m/s)
Tropical Depression (20-34kts and a closed circulation)
Tropical Storm (named) (35-64kts)
Hurricane (65+kts or 74+mph)

Saffir-Simpson Scale
knots m/h Ps,(mB) inch.Hg

Category 1 64- 83 74- 95 >980 >28.94
Category 2 83- 95 96-110 965-979 28.50-28.91
Category 3 96-113 111-130 945-964 27.91-28.47
Category 4 114-135 131-155 920-944 27.17-27.88
Category 5 >135 >155 <920 <27.16

Note: 1 knot = 1 nautical mile/hour = 1.151555 mile/hour = 1.853248 Km/hr

Storm Date Cat Pc Rc winds
Nancy Sep.12,1961 888 185 kt
Tip Oct.12,1979 870 85 m/s
Camille 1969 5 909 165 kt
Allen 1980 165 kt
Gilbert Sep. 1988 888
Hugo 1989 4
Andrew 1992 4 922

Empirical formula for approximate energy, ergs, of a storm with a central pressure, Pc, given in mb and
a radius of nearest circular isobar, Rc, given in kilometers is

E = 0.712 · 1022 · (1010− Pc) ·
(
Rc

111

)2

ergs (B.15)

B.6 Orbital: Equations of Motion

B.6.1 Orbits: Earth

V =

√
G ·Me

r
cm/sec (B.16)

where,
G = 6.67 · 10−8 dyne cm2/ gm2

Me = 5.975 · 1027 grams
r = 105 · (Re + z)
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Table B.2: Orbital parameters for the solar system
a period inclin a.node arg.perih ecc L(6430)

AU years deg deg deg deg
Venus 0.7233 0.62 3.39 76.55 131.25 0.006818 267.689
Earth 1.0000 1.00 0.00 0.00 102.77 0.016704 99.372
Mars 1.5237 1.88 1.85 49.45 335.82 0.093329 195.082
Jupiter 5.2025 11.87 1.31 100.35 15.46 0.048075 329.233
Saturn 9.5531 29.53 2.49 113.55 92.20 0.051565 238.772
Uranus 19.2642 84.55 0.77 73.99 175.28 0.046227 253.217
Neptune 30.2337 166.24 1.77 131.82 7.60 0.007972 274.526
Titan 0.0082 0.04 0.33 0.00 0.00 0.030000 0.000

Re = 6374.87

P =
2 · π · r
V · 3600

hours (B.17)

Vg =
2 · π · 105 ·Re

P · 3600
cm/sec (B.18)

Table B.3: Terrestrial satellite orbital parameters
r(Km) P(hr) V(Km/s) Vg(Km/s)
200.0 1.474 7.786 7.549
400.0 1.542 7.670 7.217
700.0 1.645 7.505 6.763
900.0 1.715 7.401 6.486

35863.9 24.000 3.072 0.464

B.7 Potential Vorticity

For adiabatic motion (i.e., Θ is a constant) the density is ρ = P (Cv/Cp). For motions between layers of
constant Θ

q = (ζ + f) · ∂Θ
∂p

= constant (B.19)

In the Shallow Water Model, where ρ is a constant (i.e., incompressible), the conserved quantity is usually
written as:

q ≡ ζ + f

gh
, seconds/meter2 (B.20)

example : flow over a mountain
< u > is eastward (westerly) then flow turns toward equator as it passes mountain, then oscillates around
original latitude.
< u > is westward (easterly) then flow turns equator-ward (note flow turning poleward ’bucks’ the flow causing
it to turn equator-ward. System is returned to original latitude after it passes mountain. No oscillations.
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B.8 Richardson Number

Big whirls have little whirls which feed on their velocity. Little whirls have lesser whirls, and so on to viscosity.
Lewis F. Richardson (1881-1953).
Dynamically significant stability indicator (similar to Burger number). As Ri → 0 convection becomes strong.

Ri

Ro
=

Effect of vertical motions
Effect of Non− linear terms

(B.21)

when the Rossby Number, Ro ≥ 1 then the static stability buoyancy frequency, N = Ri/Ro. When Ro 	
1, N = Bo/Ro

Ri =
g · dΘ

dz

T0 ·
(

dU
dz

)2 =
N2(
dU
dz

)2 (B.22)

Stone 1972 JAS 29 p. 405. For Jupiter: dΘ/dz = 6.0 · 10−10 K/cm and du/dz = 3.8 · 10−4 cm/s, then
Ri = 3.7 · 10−3

B.9 Rossby Number

A small Rossby number indicates that the geostrophic approximation is valid (i.e., du/dt = dv/dt = 0) and
that the Coriolis acceleration, v · f , is greater than the horizontal fluid acceleration, du/dt.

R0 =
du
dt

vf
≈ v2/r

vf
=
v/r

f
=

U

f0 · L (B.23)

For the GRS, hurricanes, etc.

Ro =
Vta/b

2/η3

f
(B.24)

η2 =
cos2(θ) + (a4/b4) · sin2(θ)
cos2(θ) + (a2/b2) · sin2(θ)

(B.25)

where Vt is the tangential velocity, a is the semi-major axis, b is the semi-minor axis, and θ is the angle
between the semi-major axis and the direction of motion. Mitchell et al. 1981 JGR 86 p.8751.

terrestrial Red Spot FA/BC/DE small.spots
Vt 110 m/s 120 m/s
a 1.1E7 m 4.9E6 m
Ro(0) .36 .36
Ro(90) .04 .08
g.lat 22 S 33 S 40.5 S

Great Red Spot
40000 x 13000 km (1879-1882)
20-60 m/s velocity around spot, 6 day period
bounded by Jets at -19.5 (-60 m/s) and -27.0 (+50 m/s) graphic latitude
long drift = -3.4 m/s
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+/- 1/2 degree longitude oscillation with 90 day period
anticyclonic (counterclockwise in southern hemisphere)

B.10 Thermal Wind Equation

relationship between meridional temperature gradient and vertical wind shear due to non-uniform horizontal
heating. Note: dy = Re · dϕ. Hydrostatic and geostrophic balance yields:

∂Ug

∂P
=

1
f

∂

∂y

(
1
ρ

)
=

Rg

f · P
dT

dy
(B.26)

U(z2) = U(z1)− R

f
· dT
dy

∣∣∣∣
P

log(P1/P2) (B.27)

f0
dU

dz
=
Rg

H

dT

dy
(B.28)

B.11 Velocity of sound

dU

dt
+

1
ρ

∂ρ

∂x
= 0 (B.29)

dρ

dt
+ ρ

∂U

∂x
= 0 (B.30)

d log(Θ)
dt

= 0 (B.31)

Vs =
√
γRgT , γ =

Cp

Cv
(B.32)

B.12 Vorticity

relative vorticity tend to be conserved in storm systems.

ζ = k̂ · �∇× �V =
dv

dx
− du

dy
(B.33)

absolute vorticity tends to be conserved following the motion (i.e., forecasting).

η ≡ ζ + f = k̂ · �∇× �Va (B.34)

if η is positive then it is cyclonic and if η is negative then anti-cyclonic.



Appendix C

Derivation of Planck Function

These notes are taken from Kurt Lightner’s dissertation.

Figure C.1: Kurt Lightner, circa 2003, experimenting with the solar Planck function on the deck of the
Chesapeake Lighthouse

A blackbody is an object that absorbs all wavelengths of radiation with 100% efficiency (emissivity = 1).
Many common substances like metal, concrete and water display this type of behavior. Once a blackbody
has reached thermodynamic equilibrium with its surroundings, it is desirable to know how much it radiates
at every wavelength. The first quantity that needs to be derived is the energy density per frequency, defined
in Equation C.1. The energy density can be further broken down into the density of states (Equation C.2)
times the average energy of the system (Equation C.3).

ρE(ω) = D(ω) · Ē(ω)∂ω (C.1)

14
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where,

D(ω) =
#ofstates
volume

(C.2)

Ē(ω) = average energy of the system (C.3)

−L/2  L/2
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Figure C.2: The electric field goes to zero at the walls of the conductive box therefore all standing wave
patterns will have frequency nx,y,z·π

L where nx,y,z are positive integers.

The first quantity needed is the density of states. The derivation starts with a square conductive box
with length L in thermodynamic equilibrium at some temperature T . Maxwell’s wave Equation (expression
C.4), in the absence of charged particles has the solution seen in Equation C.5.

∇2 �E − 1
c2
· ∂

2 �E

∂t2
= 0 (C.4)

�E(x, y, z, t) = �Eo · ei(kxx+kyy+kzz−ωt) (C.5)

where,

c = speed of light

Substituting Equation C.5 into Equation C.4 results in the dispersion relation Equation C.6.

ω = c · k (C.6)

k ≡
√
k2

x + k2
y + k2

z (C.7)

Since the box is conductive the boundary conditions require that �E be zero at the walls of the box (see
Figure C.2). This requires k to have the following properties:
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kx =
nxπ

L

ky =
nyπ

L

kz =
nzπ

L

where,

L = length of the box

The n’s in the previous equations are positive integers between 0 and ∞. Substituting these boundary
conditions into Equation C.7 results in Equation C.8.

k =
(
π

L

)√
n2

x + n2
y + n2

z (C.8)

n ≡
√
n2

x + n2
y + n2

z (C.9)

We want to count the number of states N(n), that exist between n and n + dn (see Figure C.3). This
can be calculated using the surface area of a sphere S(n) times dn. Equation C.9 is the length of the radius
of the sphere.

N(n) = S(n) · dn
= 2 · 1

8
· 4πn2dn

The factor of 2, comes from the 2 possible polarizations of the E field. The factor of 1
8 , accounts for the

fact that all n’s are positive integers so we only need calculate the surface area of the sphere (4πn2) in the
positive octant. It is convenient to express everything in terms of ω.

N(k) = N(n(k))
∂n

∂k
∂k

=
V

π2
· k2∂k

n(k) =
(
L

π

)
· k

δn

δk
=

L

π

where,

V = L3 = volume

To put this in terms of ω, the dispersion relationship in Equation C.6 is applied to the above expressions.

N(ω) = N(k(ω))
∂k

∂ω
∂ω

=
V

π2
· ω

2

c3
∂ω (C.10)

k(ω) =
ω

c
∂k

∂ω
=

1
c
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Figure C.3: The number of states between n and δn. Only the positive octant need be considered because
nx,y,z are all positive integers from 0 to ∞.

Using the expression for the number of states as a function of frequency (Equation C.10), the density of
states can be determined (Equation C.11).

D(ω) =
N(ω)
volume

=
1
V
·
[
V

π2
· ω

2

c3

]
∂ω

=
ω2

π2 · c3 ∂ω (C.11)

The next quantity needed to be derived is the average energy of the system Ē(ω) which is defined by
Equation C.12.

Ē(ω) = − ∂

∂β
ln(Z) (C.12)

where,

Z = partition function

β =
1

K · T
K = Boltzmann constant

T = temperature in Kelvin

The discrete partition function (Equation C.13) describing this system, shows the energy field within the
conductive box, as being individual packets of energy, and not an energy continuum. This partition function
was originally proposed by Maxwell Planck.
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Z =
∞∑

n=0

e
n·h̄·ω
K·T (C.13)

=
1

1− e h̄·ω
K·T

(C.14)

The expression for the partition function can be substituted in to Equation C.12 in order to calculate
the average energy of the system seen in the following equation.

Ē(ω) =
h̄ · ω

e
h̄·ω
K·T − 1

Now that both the density of states and the average energy of the system have been calculated, they
can be substituted back into Equation C.1 to give the energy density per frequency.

ρE(ω) =
h̄

π2 · c3 ·
ω3

e
h̄·ω
K·T − 1

∂ω (C.15)

The final step in the derivation of the Planck radiation equation is to convert Equation C.15 from
energy density per frequency with units Joules

meter3 to energy flux per solid angle per frequency with units of
Watts

meter2·steradian·frequency . First we assume that we are in the blackbody cavity where the energy density is
uniform. We want to find the fraction of energy released in time t into a unit solid angle (Equation C.16).
The volume that the radiated energy occupies after time t in one direction is A · c · t where A is the surface
area of an arbitrary cylinder and c · t is the length of that cylinder. All of the energy in this volume traveling
in one direction will pass through the end of the cylinder with area A in time t. Dividing by A · t results in
the total flux. The amount radiated into 1 steradian is 1

4π times this amount.

B(ω, T ) =
1
4π
· A · c · t
A · t · ρE(ω)

=
c

4π
· h̄

π2 · c3 ·
ω3

e
h̄·ω
K·T − 1

∂ω

=
h̄

4 · π2 · c2 ·
ω3

e
h̄·ω
K·T − 1

∂ω (C.16)

Equation C.16 is the Planck blackbody radiation function with units of Watts
m2strfrequency . An example of

the Planck function can be seen in Figure C.4. Note, that the 2 curves in the plot have been normalized
in order that they can be overlayed. The 2 functions were scaled by their peak values respectively. If the
functions had not been scaled, the magnitude of the 6000K ‘¡blackbody (solar surface temperature) would
have eclipsed the 300K blackbody (mean Earth surface temperature).
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Figure C.4: TOP: Planck function at a typical terrestrial temperature of 300K. BOTTOM: Planck function
at solar surface temperature of 6000K.



Appendix D

History of AIRS

Be the change you want to see in the world, Mohatma Gandhi

D.1 Original Specification Letter, Dec. 7, 1989

The specifications for AIRS began with a FAX from Dave Q. Wark (NOAA/NESDIS) to George Aumann
(JPL) on Dec. 7, 1989. Here is a copy of what was sent:

First revision, 12/6/89

NOAA scientific specifications for the AIRS instrument

NOAA believes that the following specifications should be placed on the AIRS instrument in order to
achieve its goals. They represent minimum performance criteria, and should not be construed as limitations.
These specifications are based on studies conducted by NOAA and the University of Wisconsin, and upon
the experience of NOAA personnel in the fields of optics, atmospheric radiation properties, calibration, data
processing, and meteorology.

I. Channels

The NOAA channel requirements for the AIRS are best expressed by the spectral regions which have
special needs, depending upon the function, the spectral density deemed appropriate, and the details
of the absorption lines. Table 1 summarizes a preliminary list of the minimum numbers of channels
required In each of eleven spectral regions, totaling 1389 channels. This is not necessarily the final
list. but it represents the results of studies over the past couple of years. Because of the experimental
nature of the AIRS, some ability to change the selection while it is functioning in orbit should be
incorporated. Frequencies In Table 1 are expressed in wavenumbers (cm−1), the normal dimension
used in spectroscopy and associated disciplines.

Table 1: Minimum NOAA requirements for numbers of AIRS channels in eleven spectral intervals. All
channels are assumed to have spectral bandwidths of one part in 1200. (DS) indicates double sampling.

1
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Band Distribution No. of channels Use
650 - 800 Adjacent (DS) 500 Temp., H2O
800 - 1300 Partial 137 03, Surf., SO2

1300 - 1350 Adjacent 45 CH4, Surf., H2O
1350 - 2050 Adjacent 501 H2O
2050 - 2150 Partial 7 Surf.
2150 - 2250 Partial 36 Temp., N20, CO
2250 - 2350 Partial 7 Temp.
2350 - 2400 Adjacent 25 Temp.
2400 - 2950 Partial 133 Temp. , Surf.
“Visible” 1 Clouds

It will be noted that there is no requirement for channels with wavenumbers less than 650. It is felt
that channels in the 600-650 om−1 range would place an undue detector requirement while providing
little benefit in temperature retrievals.

The “visible” channel would be acceptable at almost any location in the red half of the visible or in the
very near infrared outside absorption bands.

Available specifications for the AIRS specify the spectral bands in wavelengths. However, the NOAA
requirements are always given in wavenumbers (cm−1) because wavelength, by definition, is in air
at STP, whereas frequency and wavenumbers are in vacuum. Table 2 gives the wavenumber ranges
according to the specified wavelengths modified by the nominal value of n = 1.00027 for the index
of refraction of air, wavenumbers (cm−1) . 10000/[1.00027 X wavelength (µm)]. There are some
duplications where the spectrometer’s intervals overlap.

Table 2: Numbers of channels required by NOAA in the sixteen spectral intervals of the AIRS instru-
ment. (DS) indicates double sampling.
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Band Spectral range No. of channels
(cm−1) (µm) Available Required

Long Wave Spectrometer
1. 595.4 - 686.6 14.56 - 16.79 (DS) 342 132
2. 686.2 - 777.4 12.86 - 14.57 (DS) 299 298
3. 776.8 - 868.6 11.51 - 12.87 (DS) 268 94
4. 867.8 - 959.4 10.42 - 11.52 120 23
5. 958.5 - 1050.1 9.52 - 10.43 109 37
6. 1050.1 - 1141.2 8.76 - 9.52 99 24
7. 1139.9 - 1231.2 8.12 - 8.77 92 29
8. 1231.2 - 1322.4 7.56 - 8.12 85 32

Short Wave Spectrometer
1. 1322.4 - 1526.3 6.55 - 7.56 172 172
2. 1524.0 - 1129.6 5.78 - 6.56 151 150
3. 1726.6 - 1930.0 5.18 - 5.79 133 132
4. 1930.0 - 2131.6 4.69 - 5.18 119 78
5. 2131.6 - 2335.8 4.28 - 4.69 109 43
6. 2330.4 - 2537.4 3.94 - 4.29 (DS) 204 63
7. 2537.4 - 2739.0 3.65 - 3.94 91 52
8. 2739.0 - 2940.4 3.40 - 3.65 85 42

”Visible” Not specified 1

The central location of each of the thermal spectral channels is given in a file named WAVEN.DAT on
a 360K diskette compatible with an IBM personal computer. The contents or this file are described in
Appendix A, and in a file on the diskette named WORDSTAR.WST written in WORDSTAR. Appendix
B is a listing of the 1388 thermal channel locations. There are two limitations on these data:

1. It is recognized that the spectral resolution will vary across each array. This will lead to slightly
different spacing of the channels, and possibly a slightly smaller or larger number of channels in
any one spectral range. The result will be a somewhat different set of channels from that given in
the reference material described above.

a. For contiguous channels, there is no conceptual change.
b. For separated channels, the nearest adjacent channel should be selected.
c. For alternate channels, the set which best fits the specified set should be selected.

2. Exact spectral location is not a requirement. Any location may be allowed to differ from the
nominal value by $M/4 for a double density array or $M/2 for a single density array, where $M is
the full width at half maximum of the slit function.

It is the consensus that the entire complement of 2478 channels should be telemetered. and that editing
should be done on the ground. NOAA would like to urge this approach in preference to the requirements
stated above.

II. Channel failures

The failure of 2 percent of the channels. randomly spaced, will be acceptable.

III. Loss of channels in instrument design

It is reported that construction of some optical elements may require the elimination of about five
contiguous channels at several locations through the spectrum. The matter is not considered to be of
major concern and no assessment has been made regarding the consequences of losing any particular
spectral interval; regions to be safeguarded against this factor will be conveyed at a later date.
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III. Wavelength accuracy

A. There shall be a means of detecting changes in the mean frequency (wavenumber) of any channel
to one percent of its bandwidth. The frequency of determinations shall be in accord with the
orbital rate of change of temperatures of the most critical elements of the instrument which may
affect frequency changes under the most adverse conditions of the spacecraft and of the rates of
change of the solar and earth radiation environment. The information shall be telemetered at the
time of each determination.

B. Changes during any 24-hour period of operation on the spacecraft in the mean frequency (wavenum-
ber) shall not exceed five percent of its bandwidth.

IV. Spectral response

The spectral response is given by the slit function, which is defined as the convolution of the entrance
and exit slits. It is either triangular or trapezoidal. Approximately fifty percent of the slit function of
each resolution element must lie within the bandwidth, defined as the resolution of the spectrometer
(nominally 1200), and 95 percent of the slit function must lie within two resolution elements. Radiation
from all sources beyond three resolution elements must not exceed the noise equivalent radiance when
the instrument is exposed to a black body at 300 K.

V. Noise

Noise from all sources must not exceed the radiance equivalent of O.25 C at the radiance value from a
typical atmosphere (U.S. Standard Atmosphere, 1977).

VI. Stray radiation

There must be no stray radiation originating from outside the spectrometer which exceeds the noise
equivalent radiance of a channel.

itemVII. Calibration

Calibration must be performed by a view of space and a view of a well calibrated and well-designed
black-body source during each scan cycle.

VIII. Field-of-view

A. General
The field-Of-view of the AIRS must not exceed the field-of-view of the AMSU-B. This is, nominally,
the scene observed in a circular, square, or rectangular beam 1.1 degrees across at its greatest
dimension. The field-of-view is defined as the area of the scene containing 99 percent of the
radiation registered during a single measurement.

B. Overlapping
It is understood that the shape of the field stop is to be circular and that the detectors will be
sampled about once each millisecond to provide about 20 samples per field of view for an as yet
unspecified averaging process. Simple averaging would result in about 95 percent overlapping in
the scan direction, or about 47.5 percent overall. This is not acceptable, so some other averaging
scheme will be required to reduce the overlapping in the scan direction to not more than about
15 percent for an idealized field (i.e., not taking into account optical distortions or diffraction):
overlapping in the scan direction including all optical effects should not exceed 20 percent. At
least two schemes are possible:

a. Simple averaging of a reduced portion of the 20 samples. This has the disadvantage of
increasing the noise by the square root of (20/no. of samples used). For example, averaging
10 consecutive samples increases the noise by V2 and has an overlap of 32 percent in the scan
direction (circular field).
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b. It has been proposed that a weighted average, using some function which emphasizes the
center of the field-of- view, might be used. The increase in noise is the square root of the mean
value of the weighting function, equal to [2 for a triangle and 1.253 [1/[(2/P)] for a cosine.
The overlap in the scan direction is 16 percent for the former, and 25 percent for the latter.

C. Coregistration
Coregistration of the fields-of-view is defined as the integrated absolute difference between the
normalized response functions relative to the Earth image for any two spectral intervals:

Cij =
∫
y

∫
x

[|ri(x, y)− rj(x, y)|/2] dxdy,

where C is the coregistration, i and j are two spectral intervals, r() is a normalized response,
and x and y are the coordinates of the field of view projected on the earth. Cij = 0 is perfect
coregistration.

The criterion is dependent upon the wavelength of the observation, inasmuch as the requirement is
based mainly upon the influence of the surface and clouds. For two window measurements the require-
ment would be more severe than for two measurements sensitive only to the stratosphere. Previous
experience has shown that for two spectral intervals having optical depths at the surface of about 0.5
the coregistration should not exceed one percent; on the other hand. if the optical depth of one of the
channels is two or ” more at 100 mb, the coregistration can be 10 percent. Following these values, a
set of rules is used to establish the criterion for each channel:

1. If the optical depth at the surface for a channel is less than 0.5, then the criterion is one percent.
2. If the optical depth at 100 mb of a channel is greater than 2.0, then the criterion is 10 percent.
3. If neither of the above holds, the criterion is:

xi.5 = 3− log10 (Pi.5)

xi2 = 3− log10 (Pi2)

criterioni = 0.01 + .045 (xi.5 + xi2) , .1 ≥ criterioni ≥ .01

where Pi2 is the pressure level tor channels at which the optical depth is 2.0 and P1.5 is the pressure
level for channel i at which the optical depth is 0.5.

Using these rules, a set of criteria have been generated using transmittances developed for the HIS
instrument. Although these may not be entirely accurate for the AIRS instrument, any inaccuracies
are unlikely to be of consequence. Because of the length of the list, the data are transmitted on the 360K
diskette described in Section I in a file named COREG.DAT. Information on interpreting the data are
contained on the separate file named WORDSTAR.WST on the diskette, written in WORDSTAR and
given in Appendix A. The data are presented graphically in Figure 1, and the first 200 wavenumbers
and percentages are given in Appendix C.

The interval 1850-2000 cm−1 had no optical depths available and there are no criteria set tor that
range; In Figure 1 that portion is blank.

Although test data for each resolution element are not necessary, there must be tests which verify com-
puted coregistrations at a sufficient number of resolution elements to instill confidence in the remaining
resolution elements.

IX. Scan

The scan must be at the same rate as the AMSU-B, 8/3 seconds per scan line, including one look at
space and one look at an internal blackbody source.
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X. Telemetry

Outputs from the detectors must be digitized with the number or bits required to distinguish a range of
radiance equivalent to 1/4 of the electrical noise of a channel. As much of the digital range as possible
must be used between the space look and the expected maximum Earth radiances (to be specified later)
or the maximum expected radiance of the the internal blackbody source, whichever is greater. There
must, however, be an adequate safety margin at the top and the bottom of the scales to allow for
changes which might occur while in orbit.

Telemetered data will include, in addition to outputs from the detectors and such data as are deemed
necessary to monitor the behavior of the instrument: at least seven temperature measurements of the
internal black-body, at least one of them being near the center; and temperature measurements of every
significant optical element in the optical train. Temperature resolution must be 0.1 C or better.

XI. Data compression

To fit the available data rates assigned to the AIRS, some form of data compression may be required. It
is critical to the users that the form of the data compression will lend itself to easy and rapid conversion
at the ground.

XII. Deliverable items

A. Slit functions for each resolution element. These must be in a form which can be transferred to a
commonly used computer.

B. Laboratory calibration data in the the format to be used on the spacecraft. These must be in a
form which can be transferred to a commonly used computer.

C. Results of computations and tests of coregistration of individual resolution elements. These may
be in any form which will convey the assurance of meeting the coregistration criteria provided by
NOAA.

Note #1: Figure 1. and the Appendix are not included here.
Note #2: The printer is not doing the extended character set (symbols).

D.2 Cronological Events
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Table D.1: Pre-launch Cronology of the AIRS instrument
1970’s AIRS Heritage based on AMTS studies
1/1988 EOS AO
8/1989 Phase-B study w/ Honeywell

12/7/1989 Spec Letter from D. Wark to G. Aumann
3/1991 Liris selected as main contractor
1/1997 Critical Design Review
11/1997 Engineering Model

- one cooler
- some medium wave PC arrays will be simulated

12/ 4/1997 1st spectrum (Paralyne)
6/ /1999 V1.0 delivered to DAAC
11/ /1999 flight unit #1 delivered to TRW
2/ /2000 ceiling tile falls on AIRS in TRW clean-room
2/ /2000 V1.5 delivered to DAAC

6/17/2000 Mech. & Elect. I&T complete
9/28/2000 V2.0 delivered to DAAC
11/ /2000 TRW ships platform to Vandenburg
12/ /2000 deliver v2.1 (Psurf,L2 mods,VIS PGE)
5/15/2001 MOSS-3 test w/ 9/18/98 simulated data L0 -¿ L2
6/15/2001 deliver v2.15 to DAAC w/ TDS capabilities
7/30/2001 MOSS-4 test w/ 10/15/00 simulated data L0-L2, 20GB/d L0-¿JPL
10/01/2001 AQUA TVAC completed
2/24/2002 Ship from TRW space park to VAFB (170 miles)

truck was side-swipped and hit guard rail
damage assessment: inner wall not comprimised

4/01/2002 The spacecraft was fueled
4/11/2002 The spacecraft was successfully attached to the

Payload Attach Fitting (PAF)
4/17/2002 2:30 a.m. arrived at the launch pad, placed on top of

Delta II 7920-10L rocket
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Table D.2: Post-launch Startup of the Aqua Platform
5/04/2002 AQUA launch at 2 54 58.29 a.m. PDT
5/04/2002 AMSR-E antenna deployed
5/06/2002 L+02 AQUA is good orbit, AIRS spectometer at 273K
5/06/2002 L+02 23:55 GMT AIRS powered ON (noisy & quiet buses),

degassing heaters turned on
5/09/2002 L+05 AIRS group.2 power turned on.

minor problems with the spacecraft yaw attitude control
5/10/2002 L+06 verifying uploaded software tables

attitude control systems are working well
5/13/2002 L+09 Delta-V Burn (1355s)
5/13/2002 19:25 GMT AMSU-A1/A2 powered on and scanning (22:25 GMT)
5/13/2002 19:55 GMT HSB powered on and scanning (22:55 GMT)
5/15/2002 L+11 First HSB data arrived at the TLSCF

AMSU processing problems (spacecraft state flag)
were addressed

5/16/2002 AQUA above College Park at
3:11 EDT, (rev # 173: 85d elev, 683 km)
14:12 EDT (rev # 180: 84d elev, 690 km)

5/19/2002 L+15 39/16:09:42 GMT AQUA enters Sun Point (survival) Mode
AMSR-E was spinning at 34 rpm when Aqua sent ”911” signal

5/22/2002 L+18 AIRS VIS lamp tests completed
5/23/2002 L+19 AMSR-E spun up (2nd time) to 40 rpm
5/25/2002 L+21 AIRS Scanner Turned ON and VIS data acquisition begins
5/30/2002 L+26 Earth Shield was commanded to open at 3:18pm
6/ 5/2002 L+32 15:13 GMT Delta-V Burn #2/6 (1168s)
6/ 8/2002 L+35 13:02 GMT Delta-V Burn #3/6 (793.5s)
6/ 9/2002 L+36 Turned-off decontamination heater
6/10/2002 L+37 1:43 GMT Delta-V Burn #4/6 (1004s)
6/10/2002 9:55 GMT MODIS Yam Maneuvers
6/11/2002 8:55 GMT & 12:55 MODIS Yam Maneuvers

HSB in normal scan mode
6/13/2002 L+40 Initialized Cooler & turned focal plane on (FIRST LIGHT)
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Table D.3: Cronology of the AIRS instrument after 1st light
6/15/2002 MODIS Yaw Maneuvers
6/16/2002 MODIS Yaw Maneuvers
6/17/2002 AQUA at 705 km
6/17/2002 MODIS first light
6/19/2002 CERES Yaw Maneuvers
6/24/2002 MODIS Earth Shield Deployed
6/26/2002 Lunar Eclipse Entry (19:55 GMT - 25:55 GMT)
6/27/2002 AIRS AMA Adj. #1
7/12/2002 AQUA Direct Broadcast Turned on
7/15/2002 AIRS Channel Spectra Phase Tests begin
7/19/2002 MODIS Calibration
7/29/2002 AIRS defrost began to 8/9/02
8/06/2002 MODIS Press Release
8/ 9/2002 AIRS cooler watch-dog-timer (WDT) – reset
8/14/2002 AIRS re-calibration to 8/22/2002
8/22/2002 AIRS cooler re-set South Atl. Anomally (SAA) event
8/26/2002 AIRS re-calibration to 8/30/2002
8/27/2002 TRW formally turned mission operations of the Aqua

spacecraft over to GSFC staff
8/30/2002 AIRS operational again (after defrost)
9/23/2002 AIRS v6.0 RTA installed (1d to install)
9/ 1/2002 120d checkout complete Aqua office (P.Sabelhaus) dissolved

operation turned over to Mission Op (ESMO, Paul Andres)
10/ 9/2002 NOAA begins providing BUFR formatted AIRS data to NWP.
10/19/2002 SAA event warms FP, back on Monday 10/21/02
12/13/2002 Spacecraft Radiation Event, AIRS in Standby Mode
1/30/2003 L2 v2.7 delivered to DAAC (L1b updates)
2/ 5/2003 lost HSB due to current in scan motor
3/ 5/2003 upload patch to atitude control (via MODIS coastlines)
4/ 9/2003 L2 v3.0 delivered to DAAC
5/ 2/2003 Command Anomally (due to making room for Aura)
5/ 8/2003 L2 v3.0 operational
5/31/2003 Aqua Solar Eclipse [SWG 5/28/03 Bill Guit]
8/ 7/2003 NOAA 3x3 grids began

10/28/2003 AIRS/AMSU Shut Down for 3 days due to Solar Storms
2/ /2005 L2 v4.0 delivered to DAAC [1/27/05 telecon]



Appendix E

Acronyms used in Earth Remote
Sounding

One of the saddest things is that the thing a man can do for eight hours a day, day after day, is work. You
can’t eat for eight hours a day, nor drink for eight hours a day, nor make love for eight hours a day. All you
can do for eight hours is work. William Faulkner.

ABI Advanced Baseline Imager
ABS Advanced Baseline Sounder
ABLE-2 Amazon Boundary Layer Experiment, 1987
ABLE-3A Arctic Boundary Layer Experiment, 7/1988 (Alaska)
ABLE-3B Arctic Boundary Layer Experiment, 7/1990 (Ontario)
ACE Aerosol Characterization Exp.

(-1: 96 Tasmania, -2: 97 Canary Isl., -3: Asian 2001)
ACARS Aircraft Communications Addressing and Recording System
ACIA Arctic Climate Impact Assessment (+6F from 1948-2005)
ADS (IPO) Archive and Distribution Segment (a DAAC)
ADEOS (NASDA) Advanced Earth Observing Satellite
AEGIS Aerosol Global Interactions Satellite
AER Atmospheric and Environmental Research, Inc.
AERI (UW) Atmospheric Emitted Radiance Interferometer
AEROSEX (ORA) trans-Atlantic AERosol and Oceanographic Science EXperiment

2/12/04 - 3/9/04 using NOAA’s Ron Brown
AFOTEC (AF) Air Force Operations Test and Evaluation Center
AFWA (AF) Air Force Weather Agency
AFRL (AF) Air Force Research Laboratory (formerly Phillips Laboratory)
AGAGE Advanced Global Atmospheric Gases Experiment
AGGI (ESRL/GMD) Annual Greenhouse Gas Index
AGL Above Ground Level
AIRS (NASA) Atmospheric Infrared Sounder
AIRS (EPA) Aerometric Information Retrieval System

(a computer-based repository aout air pollution in the US)
ALI (EO-1) Advanced Land Imager
AMMR Airborne Multi-frequency Microwave Radiometer
AMO Atlantic Multidecadal Oscillation

1



Appendix E: Acronyms Chris Barnet August 30, 2006 2

AMSR (Aqua) Advanced Microwave Scanning Radiometer
AMSU-A Advanced Microwave Sounding Unit, 23,50,89 GHz , 3.3 deg. FOV
AMSU-B Advanced Microwave Sounding Unit, 89,183 GHz, 1.1 deg. FOV
ANWR Arctic National Wildlife Refuge
AO Announcement of Opportunity
AOCS (METOP) Attitude and Orbit Control Subsystem
AOPC (NOAA) Atmospheric Observations Panel for Climate
APT (POES) Automated Picture Transmission (low res AVHRR)
ARL Army Research Laboratory
ARM Atmospheric Radiation Measurement
ASI Agenzia Spaziale Italiana
ASHOE Airborne Southern Hemisphere Experiment (3/94 - 11/94)
ASOS (NWS) Automated Service Observing System
ASPS (AIRS) AIRS Science Processing System
ATBD Algorithm Theoretical Basis Document
ATD (NCAR) Atmospheric Technology Division
ATIP (NASA) Advanced Technology Initiatives Program
ATMIS Atmos. Moisture Inter-comparison Study
ATMS (NASA/IPO) Advanced Technology Microwave Sounder
AVHRR Advanced Very High Resolution Radiometer
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
AWIPS (NWS/NCEP) Advanced Weather Interactive Processing System

BATC Ball Aerospace and Technologies Corporation
BAT Bench Acceptance Test
BDU (AF) Battle Dress Uniform
BDRF Bi-Directional Reflectance Function
BOP (NOAA) Budget Operating Plan
BSRN Baseline Surface Radiation Network
BUAN Baseline Upper Air Network
BUFR Binary Universal Format for the Representation [of data].

c.f. conferre (latin) to compare
CAFE Corporate Average Fuel Economy
CAIR (EPA) clear air interstate rule
CAIV Cost As an Independent Variable
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
CAMEO (JPL) Composition of the Atmosphere from Mid-Earth Orbit
CAMEX Convection And Moisture EXperiment (-III 8/98 FL)
CAPE (GOES) Convective Available Potential Energy (J/kg)
CARS (NPP) Climate Averaging Research System
CART Clouds and Radiation Testbed
CASA Carnegie-Ames-Stanford Approach
CATO (GSFC/UMBC) Cooperative Agreement Technical Officer
CBL Convective Boundary Layer (1-2 AGL km in daytime)
CCAFS Canaveral Air Force Station, Florida
CCDAS (UK) Carbon-cycle data assimilation system
CCRI (GCRP) Climate Change Research Initiative
CCTI (GCRP) Climate Change Technology Initiative
CCSP (USGCRP) Carbon Cycle Science Plan
CCSP (USGCRP) Climate Change Science Program
CDOM Color Dissolved Organic Matter
CDR Critical Design Review
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CDR (IPO) Climate Data Record (== AIRS FINAL product L2)
CDRL (GOES) Contract Data Requirements List
CEMSCS (NESDIS) Central Environmental Satellite and Computer System
CENA (ESSP) Climatologie Etendue des Nuages et des Aerosols.
CEOP Coordinated Enhanced Observation Period
CEOS Committee on Earth Observation Satellites
CERES Clouds and the Earth’s Radiant Energy System
CFLOS (LIDAR) Cloud Free Line of Sight
Cij Spatial Co-registration between channel i and j.
CIMSS (SSEC, UW) Cooperative Institute for Meteorological Satellite Studies
CIRA (NOAA) Cooperative Institute for Research in the Atmosphere

(Colorado State w/ NOAA, NASA, DOD)
CIS Commonwealth of Independent States (FSU excluding Baltic states)
CLAMS Chesapeake Lighthouse and Aircraft Measurements for Satellites
ClaMS Chemical Lagrangian Model for the Stratosphere
CLASS (NESDIS) Comprehensive Large Array-data Stewardship System
CLIVAR Climate Variability and Predictability
CMDL (NOAA) Climate Monitoring and Diagnostics Laboratory (ESRL/GMD after 10/1/05)
CNES Centre National d’Etudes Spatiales
CMIS (IPO) Conical Microwave Imager and Sounder
CMMI (SEI) Capability Maturity Model Integration
CNOOC Chinese Northern Offshore Oil Corp.
COBRA CO2 Budget and Rectification Airborne campaign (S. Wofsy, 8/00, 6/03)
COCO ?? a european initiative to study CO2 algorithms

neural nets (Alain Chedin) and 4DVAR assimilation
(Richard Engelen) are the main approaches

COOP (ORA) Continuation of Operations (security & location of employees)
CONOPS CONcept of OPerationS
COPES Coordinated Observation and Prediction of the Earth Ssytem

(2005-2015, see WCRP)
CORL (SBSRB) Consolidated Operations Requirements List
COSMIC (NCAR) Constellation Observing System for Meteorology,

Ionosphere & Climate
COTR (GSFC) Contracting Officer and Technical Representative
COTS Components Off The Shelf
COVE CERES Ocean Validation Experiment (@ Chesapeake Light,

27 km f/Vir.Beach, 35’ of water, 1 mile f/ Bay
CPC (NOAA/ORA) Climate Prediction Center
CPT Cold Point Tropopause
CPT Comprehensive Performance Test
CrIS (IPO) Cross-track Infrared Sounder
CSIRO (Australia) Commonwealth Scientific & Industrial Research Organisation
CTCD (UK) Centre for Terrestrial Carbon Dynamics
CTIA Capacitive (feedback) Trans-Impedance Amplified
CUERE (UMBC) Center for Urban Environmental Research and Education
C4ISR Command & control,communications,computers,intelligence,

surveillance and reconnaissance
C4IT Command & control,communications,computers,information age technology

DARC (UK) Data Assimilation Research Centre
DAO Data Assimilation Office of GSFC’s Laboratory for Atmospheres
DDIP (USA) Data Denial Implementation Plan
DDS (OSDPD) Data Distribution Server



Appendix E: Acronyms Chris Barnet August 30, 2006 4

DEM Digital Elevation Map
DIAL DIfferential Absorption Lidar
DIC (USGCRP) Dissolved Inorganic Carbon
DISORT DIScrete Ordinate Radiative Transfer
DMIP (NOAA) Distributed Model Intercomparison Project
DMSP Defense Meteorological Satellite Program
DMUM (EOS) Drag Makeup Maneuver
DPI (GOES) Derived Product Imagery
DOM (USGCRP) Dissolved Organic Matter
DWL Doppler Wind LIDAR

e.g. exempli gratia (latin) for the sake of example; for example
ECMWF European Center for Medium-Range and Weather Forecasts
EDFA Erbium Doped Fiber-optic Amplifiers (LIDAR)
EDG EOS Data Gateway (EOSDIS interface to 1200 datasets)
EDGEIS Environmental Data Graphics Evaluation and Imaging System.
EDOS (EOSDIS) EOS Data and Operations System (down-link component of EOSDIS)
EDR (IPO) Environmental Data Record
EDU (IPO) Engineering D? Unit Design?
EECl Effective Equivalent Chlorine
EESC Effective Equivalent Stratospheric Chlorine
EIA (DOE) Energy Information Administration
EOS (NASA) Earth Observation System
EESI Environmental and Energy Study Institute (founded 1984 bipartisan group)
EM Engineering Model
EMC (NOAA) Environmental Modeling Center
EMWIN (GOES) Emergency Managers Weather Information Network
EQUATE European aQUA Thermodynamic Experiment
ESMD (NASA) Exploration Systems Mission Directorate
ENVISAT ENVIronmental SATellite (ENVISAT 6/01)
ENSO El Nino Southern Oscillation (Ni{\tilde n}o)
EPIC Earth Polychromatic Imaging Camera
EPS (IASI) European Polar System
ERBE Earth Radiation Budget Experiment
ESA European Space Agency
ESDIS (GSFC) Earth Science Data and Information System
ESE (NASA) Earth Science Enterprise
ESMF (NOAA) Earth System Modeling Framework
ESRIN (ESA) European Space Research INstitute
ESRL (NOAA) Earth System Research Laboratory (10/1/05 consolidate 6 facilities)
ESSIC (UMCP) Earth System Science Interdisciplinary Center
ESSP (NASA) Earth System Science Pathfinder
ESTC (SAIC) Executive Sciences and Technologies Council
ESTO (NASA) Earth Science Technology Office (IIP+ESSP)
ETL (NOAA) Environmental Technology Laboratory (ESRL/??? after 10/1/05)
EUMETSAT EUropean organization for exploitation of METeorological SATellites
EVM (NOAA) Earned Value Management

FAR (NASA) Federal Acquisition Regulation
FASCODE Fast Atmospheric Signature Code
FIR Finite Impulse Response (filter)
FIRE First ISCCP Regional Experiment
FNMOC Fleet Numerical Meteorology and Oceanography Center
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FOT Flight Operations Team
FOV Field of View
FPDT (STAR) Forecast Product Development Team (Hank Drahos’ group)
fSU former Soviet Union
FTIR Fourier Transform InfraRed
FWHM Full Width at Half Maximum

GAC global area coverage (usually reduced horizontal resolution)
GCOS Global Climate Observing System
GCRP Global Change Research Program
GDAS (NOAA)
GEMS (ECMWF) Global Earth-system monitoring using Space and in-situ data
GEOSSS Global Earth Observation System of Systems
GEST Goddard Earth Sciences and Technology (GSFC/UMBC + others)
GFDL (NOAA) Geophysical Fluid Dynamics Laboratory
GIFTS Geostationary Imaging Fourier Transform Spectrometer
GIS Geographic Information System
GLAS Geoscience Laser Altimeter Systems (ICEsat-1)
GLM (GOES) GOES Lightning Mapper
GMAO (GMAO) Global Modeling and Assimilation Office
GMD (NOAA/ESRL) Global Monitoring Division
GOCART (GSFC) Goddard Chemistry Aerosol Radiation Transport [model]
GOES Geostationary Environmental Operational Satellite
GOME Global Ozone Monitoring Experiment (ERS-2)
GORD (GOES) Geosynchronous Operational Requirements Document 12/2/02
GOSAT Greenhouse gases Observing SATellite
GOSP Gas Oil Separation Plant
GPCP (NOAA) Global Precipitation Climatology Project
GPP (CO2) Gross Primary Productivity
GPRA Government Performance and Results Act (1993 OMB)
GPRD (GOES) GOES Program Requirements Document -1 on 6/14/04
GPS Global Positioning System
GraDS Grid Analysis and Display System
GSFC (NASA) Goddard Space Flight Center
GSC General Sciences Corporation
GSI (NWS) Gridpoint Statistical Interpolation data assim. system
GSS Ground Support System
GTOP Global Tropospheric Ozone Project (proposed)
GTWS Global Tropospheric Wind Sounder
GUAN GCOS Upper Air Network
GWPAS (STAR) Gov. Worker Performance Appraisal S?

HAIPER (NCAR/ATD/RAF) High-performance Instrumented Airborne Platform
for Environmental Research (max alt. 51,000’ (15.5 km))

HALOE HALogen Occultation Experiment
HDF Hierarchical Data Format
HES (GOES) Hyperspectral Environmental Suite
HIPPI HIgh Performance Peripheral Interface
HIRDLS (Aura) High-Resolution Dynamics Limb Sounder
HIRS High-resolution InfraRed Spectrometer
HITRAN HIgh-resolution TRANsmittance model
HIS High-resolution Interferometric Spectrometer
HNO3 Nitric Acid
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HU Howard University
HSB Humidity Sounder for Brazil
HTB (NCEP) Hydrological Test Bed
HYSPLIT () Hybrid Single-Particle Lagrangian Integrated Trajectory

i.e. id est (latin) that is
IASI Infrared Atmospheric Sounding Interferometer
ibid ibidem (latin) in the same place
IBR (IPO) Integrated Baseline Review
ICD (EOS) Interface Control Document
ICEsat Ice, Cloud and land Elevation Satellite
ICSR (IPO) Issue/Clarification/Support/Request Form
IDA Institute for Defense Analysis
IDPS (IPO) Integrated Data Processing System
IEA International Energy Agency
IEOS Integrated Earth Observing System
IGBP International Geo-sphere-Biosphere Programme
IGCO (IGOS) Integrated Global Carbon Observation (theme)
IGOS (CEOS) Integrated Global Observing System
IGS (IPO) Internal Government Studies
IHDP International Human Dimensions Programme
IIP (or I^2P) Instrument Incubator Program
IJPS Initial Joint Polar Systems (signed 11/19/98)
ILAS Improved Limb Atmospheric Spectrometer
IMAS Integrated Multi-spectral Atmospheric Sounder
IMDC (GSFC) Integrated Mission Design Center
INPE Instituto Nacional de Pesquisas Espaciais
IOSSPDT (STAR) Integrated Observing System Science and Product Development Team
INTEX Intercontinental Chemical Transport Experiment (Singh et al, 2003/04)
IPPD Integrated Product and Process Development
IOP Intensive Operations Period
IORD (IPO) Integrated Operational Requirements Document
IMAU Institute for Marine and Atmospheric Research Utrecht
IMT (NASA) Integrated Mission Time-line
IPCC Intergovernmental Panel on Climate Change
IPO Integrated Program Office
IR Infrared
ISAL (GSFC) Instrument Synthesis Analysis Lab.
ISAS Institute of Space and Astronomical Science (Japanese)
ISCCP Int’l Satellite Cloud Climatology Project‘
ISLSCP International Satellite Land Surface Climatology Project
ISO International Organization for Standardization
ISRO Indian Space Research Organization
ISSWG (IASI) IASI Sounding Science Working Group
ITAR (USA) International Traffic in Arms Regulations
ITCZ inter-tropical convergence zone
ITPP
ITS (GGSFC) Information Technology Security
ITSC International TOVS Study Conference
ITWG International TOVS Working Group
ITS Interferometer Thermal Sounder
ITT
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JARG (IPO) Joint Agency Requirements Group
JAXA Japanese Aerospace Exploration Agency
JCET Joint Center for Earth systems Technology (GSFC/UMBC)
JCSDA (ORA) Joint Center for Satellite Data Assimilation (UMCP/NESDIS)
JMA Japan Meteorological Agency
JPL Jet Propulsion Laboratory
JPS Joint Polar Systems
JWST James Webb Space Telescope

kCARTA k-Compressed Atmospheric Radiative Transfer Algorithm
KCEPA kilo-gram coal equivalent (29.31 GJ) per year
KPP (GOES) Key Performance Parameters

LABB (AIRS) Large Area Black Body
LAC local area coverage (usually maximum horizontal resolution)
LaRC (NASA) Langley Research Center
LASER Light Amplification by Stimulated Emission of Radiation
LAWS (NASA) LASER Atmospheric Wind Sounder
LASE (LARc) Lidar Atmospheric Sensing Experiment
LBA (NASA/INPE) Large-scale atmosphere Biosphere experiment in Amazonia
LBLRTM line-by-line radiative transfer model
LCRF Long-wave Cloud Radiative Forcing (Clear.sky.OLR-OLR)
LEF linear elastic fracture
LEISA (EO-1, Reuter) Linear Etalon Imaging Spectrometer Array
LFPA (GIFTS) Large area format Focal Plane detector Arrays
LIDAR LIght Detection and Ranging
LITE Lidar In space Technology Experiment
LMD Laboratoire de Meteorologie Dynamique du CNRS
LMIRIS Lockheed Martin IR Imaging Systems
LNA Low Noise Amplifier
LNG Liquid Natural Gas
LSCE Laboratoire des Sciences du Climat et de l’Environnement

MAGNETT (NOAA/CMDL) Measurement of Anthropogenic Gases and Natural Emissions
from Tall Towers

MAP (SOUNDING) Maximum A-Posteriori
MARS (IASI) Mediteranean Agency for Remote Sensing
MASER Microwave Amplification by Stimulated Emission of Radiation
MATCH Model of Atmospheric Transport and Chemistry
McIDAS Man computer Interactive Data Analysis System
MCC (EUMETSAT) Mission Control Center (Darmstadt Germamy)
MCR (NASA) Mission Confirmation Review
MCT or HgCdTe, Mercury-Cadmium-Telluride detector or material
METOP (ESA) METeorological Observing Platform (?)
MHS Microwave Humidity Sensor: 89,183 GHz, 1.1 deg. FOV
MIPAS (ENVISAT) Michelson Interferometer for Passive Atmospheric Sounding
MM5 (PSU/NCAR) Mesoscale Model 5
MMIC Microwave Monolithic Integrated Circuit
MOBY (NOAA) Marine Optical Buoy
MODIS MODerate resolution Imaging Spectroradiometer
MODTRAN MODerate-resolution atmospheric radiance and TRANsmittance model
MOPITT (EOS) Measurement of Pollution in the Troposphere
MORL (SBSRB) Mission Operations Requirements List
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MOSS (DAAQ) Mission Operation Science System
MPI (DAO) Message Passing Interface
MPI Max Planck Institute
MRD (GOES) Mission Requirements Document

(1 on 12/06/02, 1A on 7/17/03, 2B on 12/13/04)
MSU Microwave Sensor Unit
MSFC Marshall Space Flight Center
MTPE Mission To Planet Earth
MTS (IPO) microwave thermal sounder

NO Nitric Oxide
N2O Nitrous Oxide
NACP North American Carbon Program (2004 INTEX)
NAO Northern Atlantic Oscillation (pressure difference Iceland-Azores)
NAO (NOAA) NOAA Administration Order
NARC (UK) Natural Environment Research Council
NASA National Aeronautics and Space Administration
NASA Not Always Scientifically Accurate
NASDA (Japan) National Space Development Agency
NAST (IPO) NPOESS Airborne Sounder Testbed
NCAR National Center for Atmospehric Research (managed by UCAR)
NCAS (NOAA) NOAA Center for Atmospheric Sciences (joint center w/ HU)
NCCP NASA Carbon Cycle Program
NCEP National Centers for Environmental Prediction
NDE (ORA) NPOESS Data Exploitation
NDSC Network for Detection of Stratospheric Change
NDVI Normalized Difference Vegetation Index
Nd:YAG neodymium-doped yttrium aluminum garnet
NEDT Noise Equivalent Differential Temperature
NEDN Noise Equivalent Differential Noise (Radiance units, usually)
NEE (CO2) Net Ecosystem Exchange = <CO2’*w’>
NEP (USGCRP) Net Ecosystem Production
NESDIS (NOAA) National Environmental Satellite, Data, and Information Service
NESR Noise Equivalent Spectral Radiance
NEXRAD (NOAA) NEXt generation weather RADar
NGST Northrop Grumman Space Technology
NIES (JAXA) National Institute for Environmental Studies
NMAO NOAA Marine and Aviation Operations
NMFS National Marine and Fisheries Service
NMHC Non-Methane HydroCarbons
NMP (NASA) New Millennium Program
NOAA National Oceanographic and Atmospheric Administration
NOO Naval Oceanographic Office
NOS (NOAA) National Ocean Service
NOSA (NOAA) NOAA Operatonal System Architecture
NOSC (NOAA) NOAA Observing Systems Council
NPOESS National Polar-orbiting Operational Environmental Satellite System
NPP NPOESS Preparatory Project
NRA NASA Research Announcement
NRL Naval Research Laboratory (Monterey CA & Wash. DC)
NRO National Reconnaisance Office (created 1960, White House,CIA,AF,DoD)
NSA (ARM) North Slope o/ Alaska
NSIPP NASA Seasonal-to-Inter-annual Prediction Project
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NWS National Weather Service

OAT (IPO) Operational Algorithm Team
OAR (NOAA) office of Oceanic and Atmospheric Research
OBC (AIRS) On-board calibrator
OCO (ESSP) Orbiting Carbon Observatory (like to molecule, O-C-O)
OCO (NOAA) Office of Climate Observation
ODGI (ESRL/GMD) Ozone Depleting Gas Index
ODIN (NASA) Outsourcing Desktop Initiative (Intellisource)
OECD Organization for Economic Cooperation and Development

Australia Austria Belgium Canada Czech Republic
Denmark Finland France Germany Greece
Hungary Iceland Ireland Italy Japan
Korea Luxembourg Mexico Netherlands New Zealand
Norway Poland Portugal Slovak Republic Spain
Sweden Switzerland Turkey United Kingdom United States

OES (NASA) Office of Earth Science
OLR Outgoing Long-wave Radiation
OMB Office of Management and Budget
OMPS (NPP) Ozone Mapping and Profiling Suite
OOIP original oil in place
OPEC Organization of Petroleum Exporting Countries
OPTRAN (NOAA) Optical Path TRANsmittance
ORA (NOAA) Office of Research and Applications
OSDPD (NOAA) Office of Satellite Data Processing and Distribution
OSO (NOAA) Ofiice of Satellite Operations
OSS (IPO) Optimal Spectral Sampling (ITT RTA)
OSSE (DAO) Observational System Simulation Experiment
OT&E (DoD) Operational Test & Evaluation

P^3I (IPO) Pre-Planned Product Improvement
PAC (NOAA) Procurement, Acquisition, and Constructions funds

(Dave Reynolds manages)
PAVE Polar Aura Validation Experiment (Jan. 24-Feb. 9, 2005)
PBA (NOAA) Program Baseline Assessment
PBMR Push Broom Microwave Radiometer
PC Photo-conductive
PDI (cyclones) power dissipation index (PDI)
PDR Preliminary Design Review
PDRR (GOES) Program Definition and Risk Reduction
PEATE (NPP) Product Evaluation and Algorithm Test Element
PFAAST (UMBC)
PGE (AIRS) Product Generator Executable
PFP (ESRL/GMD) Programmable Flask Packages
Picasso (ESSP) Pathfinder Instrument f/Cloud & Aerosol Spaceborne Obs.
PM2.5 particulate mass <= 2.5 um (fine particulate)
PMEL (NOAA) Pacific Marine Environmental Labs.
PNNL (DOE) Pacific Northwest National Laboratory
POES Polar-orbiting Operational Environmental Satellite
POP (NOAA) Program Operating Plan
PORD (GOES-R) Performance and Operational Requirements Document
PPBES (NOAA) Planning, Programming, Budgeting & Execution System
PPI (NOAA) Program Planning and Integration
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PRB (EPA) Policy relevant background
PSAS (DAO) Physical-space Statistical Analysis System
PSU Pennsylvania State University
PV Photo-voltaic

QUEST (MPI) Quantifting and Understanding the Earth System
QWIP Quantum Well Infrared Photo-detector

R2O (NASA) Research to Operations
RAF (NCAR/ATD) Research Aviation Facility
RAID Redundant Array of Inexpensive Disk (error correct disk system)
RAL Rutherford Appleton Laboratory (Chilton UK)
RDR (IPO) Raw Data Record (== AIRS L1a)
RFI Reqeust For Information
ROIC Read Out Integrated Circuit
ROSES (NASA) Research Opportunities in Space and Earth Sciences
RTA Rapid Transmittance Algorithm
RTIA Resistive (feedback) Trans-Impedance Amplifier
RUC (NOAA) Rapid Update Cycle mode

S^3C (NASA) Sun Solar System Connection
SAB (USA) Science Advisory Board
SAF (EUMETSAT) Satellite Application Facilities
SAFARI Southern African Regional Science Initiative, Aug. 16-29, 2000
SAGE Stratospheric Aerosol and Gas Experiment
SAIC (GSC) Science Applications International Corporation
SALEGOS (SCAR) SubglAcial Lake Exploration Group Of Specialists
SBC (SRT) Statistical Bias Correction (Joel’s algorithm)
SBDART Santa Barbara DISORT Atmospheric Radiative Transfer
SBRC Santa Barbara Research Center (Hughes, Goleta CA)
SBRS Santa Barbara Remote Sensing
SBSRB Satellite Products and Services Review Board
SCAR Smoke Clouds and Radiation (experiment) (7/93 Arctic, 8/95 Brazil)
SCAR Scientific Committee on Antarctic Research
SCIAMACHY (ESA - ENVISAT-1) SCanning Imaging Absorption spectroMeter

for Atmospheric CHartographY
SDC (SAIC) Systems Development Center
SDR (IPO) Sensor Data Record (= AIRS L1b)
SEAS (SAIC) Space, Earth, and Atmospheric Sciences, Group of SAIC (~ 750)
SEEDS (DAO) Strategic Evolution of ESE Data Systems (formerly NewDISS)
SEI Software Engineering Institute
SEISS (GOES) Space Env. In-Situ Suite
SERC Smithsonian Environmental Research Center (Edgewater MD)
SES (NOAA) Senior Executive Service
SEVIRI (Meteosat-8) Spinning Enhanced Visible and InfraRed Imager
SFR (IPO) System Functional Review
SGP (ARM) Southern Great Plains
SGP97 Southern Great Plains 1997 Hydrology Experiment June-July 1997
SHeBA Surface Heat Budget of Arctic
SIPS (AIRS) Science Investigator-led Processing System (if funded)
SIS (GOES) Solar Instrument Suite
SMART (ESA) Small Missions for Advanced Research in Technology
SMCD (NESDIS/STAR) Satellite Meteorology and Climate Division
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SMOW Standard Marine Ocean Water
SNO (STAR) Simultaneous Nadir Overpass
SOCAR State Oil Company pf the Azerbaijan Republic
SOCC (NOAA/OSO) Satellite Operation Control Center
SOLSTICE (Solar Stellar irradiance Comparison Exp.) and
SOLVE SAGE III Ozone Loss and Validation Experiment
SORCE SOlar Radiation and Climate Experiment

(a combination of SOLSTICE + TSIM)
SPOP (NESDIS) Satellite Products Oversight Panel
S/N Signal to Noise ratio
SPADE Stratospheric photochemistry aerosols and dynamics expedition
SPARCLE SPAce Readiness Coherent Lidar Experiment
SPB (STAR) Sensor Physics Branch
SPIWG (SBSRB) SPSRB Process Improvement Working Group
SPORT (NASA) Short-term Prediction and Research Transition Center
SPSRB (NESDIS/ORA/OSDPD) Satellite Products and Services Review Board
SRD (IPO) Systems Requirement Document
SRF Spectral (channel) response function
SRON Netherlands Institute for Space Research
SRR (IPO) System Requirements Review
SSAI Space Systems and Applications, Inc., Lanham
SSEC (UW) Space Science and Engineering Center
S/SSR (IPO) System/Subsystem Specification Review
SSSPR (ITWG) Satellite Sounder Science and Products
SSU Stratospheric Sounding Unit
STAAC (GSFC) Systems, Technology, and Advanced Concepts
STAR (NESDIS) office of SaTellite Applications and Research
STE Stratosphere-Troposphere Exchange
STILT Stochastic Time-Inverted Lagrangian Transport
STJ Sub-Tropical Jet
STRATOZ Stratospheric Ozone 3/85, 6/84, Atlantic urban coastline
SUCCESS SUbsonic Contrail and Cloud Effects Spectral Study (4/96 KA)
SVAT Surface Varying Atmospheric Transfer (models)
SVD Singular Value (eigenvalue) Decomposition
SVBB Space View Black Body

TARFOX Tropospheric Aerosol Radiative Forcing Study (7/96, Wallops)
TCCON (OCO) Total Carbon Column Observing Network
TCSP Tropical Cloud Systems ans Processes (experiment in Summer 2005)
TEFLUN TExas FLorida UNderflight (4/98, f/ TRMM)
TDL Tunable Diode Laser
TDS (AIRS) TLSCF Data System
TEC (IASI) Technical Expertise Center (Ground Processing)
TES (EOS) Tropospheric Emission Spectrometer
TIGR TOVS Initial Guess Retrieval dataset (1761 profiles)
TIM (IPO) Technology Interchange Meeting
TIROS Television and Infrared Operational Satellite
TLSCF (AIRS) Team Leader Science Computing Facility
TLF (EOS) Team Leader Facility
TMI TRMM Microwave Imager
TOAST Total Ozone Analysis from SaTellites

Total Ozone Analysis from SBUV/2 and TOVS (prior to 6/06)
TOGA Tropical Oceans - Global Atmosphere (program 1/85 to 12/94)
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TOPS (AMES) Terrestial Observation and Prediction System
TOVS TIROS Operational Vertical Sounder
TRMM Tropical Rainfall Measuring Mission
TRACE-A Sep./Oct. 1992, S.America, Africa Biomass Regions
TRACE-P 2/25/01 to 4/10/01 NW Pacific/Asian outflow
TRL (NASA) Technology Readiness Level
TRL 1 Basic principles observed and report (ATIP’s)
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic

proof-of-concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment (IIP/NMP)
TRL 6 System/subsystem model or prototype demonstration in a relevant

environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and "flight qualified" through test and

demonstration (ground or space)
TRL 9 Actual system "flight proven" through successful Mission operations
TROPOZ Tropospheric Ozone 1/91, 12/87
TSIM Total Solar Irradiance Exp.
TSPR (IPO) Total System Performance Responsibility contractor
TWP (ARM) Tropical Western Pacific

UARP Upper Atmosphere Research Program (NASA)
UARS Upper Atmosphere Research Satellite
UAV Unmanned Airborne Vehicles
UCAR University Corporation for Atmospheric Research

(100 unversity members and affiliates founded 1960)
UCSB Univ. of California at Santa Barbara
UDMH unsymmetrical dimethyl-hydrazine
UMARF (IASI) Unified Meteorological Archiving Facility
UMCP University of Maryland, College Park
UMBC University of Maryland, Baltimore County
URR ultimate recoverable resources
USGCRP U.S. Global Change Research Program
USRA Universities Space Research Association
UTLS Upper-Troposphere/Lower Stratosphere

VAFB Vandenberg Air Force Base (Lompok, CA)
VIIRS (IPO) Visible/IR Imaging Radiometer Suite
vis-‘a-vis (french) "face-to-face"
vis. videlicet (latin) namely
VISIT (NWS) Virtual Institute for Satellite Integration Training

WCRP World Climate Research Program (GEWEX, Clic, CLIVAR, SPARC)
WINCE WINter Cloud Experiment (2/97 WI)
WIPP (DOE) Waste Isolation Pilot Plant
WRF (NWS) Weather Research and Forecast (initialized by GSI)

model to replace MM5, NCEP/ETA, NOAA/FSL/RUC
WMO World Meteorological Organization
WOUDC World Ozone and Ultraviolet radiation Data Center
WPTB (IPO) Weather Product Test Bed



Appendix E: Acronyms Chris Barnet August 30, 2006 13

YMP (DOE) Yucca Mountain Project


